Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of permutations of an Array having each element as a multiple...

Count of permutations of an Array having each element as a multiple or a factor of its index

Given an integer, N, the task is to count the number of ways to generate an array, arr[] of consisting of N integers such that for every index i(1-based indexing), arr[i] is either a factor or a multiple of i, or both. The arr[] must be the permutations of all the numbers from the range [1, N].

Examples:

Input: N=2
Output: 2
Explanation:
Two possible arrangements are {1, 2} and {2, 1}

Input: N=3
Output: 3
Explanation:
The 6 possible arrangements are {1, 2, 3}, {2, 1, 3}, {3, 2, 1}, {3, 1, 2}, {2, 3, 1} and {1, 3, 2}.
Among them, the valid arrangements are {1, 2, 3}, {2, 1, 3} and {3, 2, 1}.

Approach: The problem can be solved using Backtracking technique and the concept of print all permutations using recursion. Follow the steps below to find the recurrence relation:

  1. Traverse the range [1, N].
  2. For the current index pos, if i % pos == 0 and i % pos == 0, then insert i into the arrangement and use the concept of Backtracking to find valid permutations.
  3. Remove i.
  4. Repeat the above steps for all values in the range [1, N], and finally, print the count of valid permutations.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the count of
// desired permutations
int findPermutation(unordered_set<int>& arr,
                    int N)
{
    int pos = arr.size() + 1;
 
    // Base case
    if (pos > N)
        return 1;
 
    int res = 0;
 
    for (int i = 1; i <= N; i++) {
 
        // If i has not been inserted
        if (arr.find(i) == arr.end()) {
 
            // Backtrack
            if (i % pos == 0 or pos % i == 0) {
 
                // Insert i
                arr.insert(i);
 
                // Recur to find valid permutations
                res += findPermutation(arr, N);
 
                // Remove i
                arr.erase(arr.find(i));
            }
        }
    }
 
    // Return the final count
    return res;
}
 
// Driver Code
int main()
{
    int N = 5;
    unordered_set<int> arr;
    cout << findPermutation(arr, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// Function to find the count of
// desired permutations
static int findPermutation(Set<Integer>arr,
                           int N)
{
    int pos = arr.size() + 1;
 
    // Base case
    if (pos > N)
        return 1;
 
    int res = 0;
 
    for(int i = 1; i <= N; i++)
    {
         
        // If i has not been inserted
        if (! arr.contains(i))
        {
             
            // Backtrack
            if (i % pos == 0 || pos % i == 0)
            {
                 
                // Insert i
                arr.add(i);
 
                // Recur to find valid permutations
                res += findPermutation(arr, N);
 
                // Remove i
                arr.remove(i);
            }
        }
    }
 
    // Return the final count
    return res;
}
 
// Driver Code
public static void main(String []args)
{
    int N = 5;
    Set<Integer> arr = new HashSet<Integer>();
     
    System.out.print(findPermutation(arr, N));
}
}
 
// This code is contributed by chitranayal


Python3




# Python3 program to implement
# the above approach
 
# Function to find the count of
# desired permutations
def findPermutation(arr, N):
 
    pos = len(arr) + 1
 
    # Base case
    if(pos > N):
        return 1
 
    res = 0
 
    for i in range(1, N + 1):
 
        # If i has not been inserted
        if(i not in arr):
 
            # Backtrack
            if(i % pos == 0 or pos % i == 0):
 
                # Insert i
                arr.add(i)
 
                # Recur to find valid permutations
                res += findPermutation(arr, N)
 
                # Remove i
                arr.remove(i)
 
    # Return the final count
    return res
 
# Driver Code
N = 5
arr = set()
 
# Function call
print(findPermutation(arr, N))
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to find the count of
// desired permutations
static int findPermutation(HashSet<int>arr,
                           int N)
{
    int pos = arr.Count + 1;
 
    // Base case
    if (pos > N)
        return 1;
 
    int res = 0;
 
    for(int i = 1; i <= N; i++)
    {
         
        // If i has not been inserted
        if (! arr.Contains(i))
        {
             
            // Backtrack
            if (i % pos == 0 || pos % i == 0)
            {
                 
                // Insert i
                arr.Add(i);
 
                // Recur to find valid permutations
                res += findPermutation(arr, N);
 
                // Remove i
                arr.Remove(i);
            }
        }
    }
 
    // Return the readonly count
    return res;
}
 
// Driver Code
public static void Main(String []args)
{
    int N = 5;
    HashSet<int> arr = new HashSet<int>();
     
    Console.Write(findPermutation(arr, N));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to find the count of
// desired permutations
function findPermutation(arr, N)
{
    var pos = arr.size + 1;
 
    // Base case
    if (pos > N)
        return 1;
 
    var res = 0;
 
    for(var i = 1; i <= N; i++)
    {
         
        // If i has not been inserted
        if (!arr.has(i))
        {
             
            // Backtrack
            if (i % pos == 0 || pos % i == 0)
            {
                 
                // Insert i
                arr.add(i);
 
                // Recur to find valid permutations
                res += findPermutation(arr, N);
 
                // Remove i
                arr.delete(i);
            }
        }
    }
 
    // Return the final count
    return res;
}
 
// Driver Code
var N = 5;
var arr = new Set();
 
document.write(findPermutation(arr, N));
 
// This code is contributed by importantly
 
</script>


Output: 

10

 

Time Complexity: O(N×N!)
Auxiliary Space: O(N)
 

Using Brute Force in python:

Approach:

The first approach is to generate all possible permutations of the array and check if each element is a multiple or a factor of its index. We can do this using a recursive function to generate permutations and then checking each permutation.

  • Define a function is_valid(arr) that takes an array arr and checks if each element is a multiple or a factor of its index. It returns True if all elements satisfy this condition, otherwise False.
  • Define a recursive function generate_permutations(arr, l, r, valid_permutations) that generates all possible permutations of the array arr from index l to index r. For each permutation, it checks if it is valid using the function is_valid(arr). If a valid permutation is found, it is added to the list valid_permutations.
  • Define a function count_permutations(n) that creates an array arr of size n, initializes it with values 1 to n, and calls the function generate_permutations() with arr, 0, n-1, and an empty list valid_permutations. It then returns the length of valid_permutations.
    Call the function count_permutations() with the input n and print the result.

Python3




def is_valid(arr):
    for i in range(len(arr)):
        if arr[i] % (i+1) != 0 and (i+1) % arr[i] != 0:
            return False
    return True
 
def generate_permutations(arr, l, r, valid_permutations):
    if l == r:
        if is_valid(arr):
            valid_permutations.append(arr[:])
    else:
        for i in range(l, r+1):
            arr[l], arr[i] = arr[i], arr[l]
            generate_permutations(arr, l+1, r, valid_permutations)
            arr[l], arr[i] = arr[i], arr[l]
 
def count_permutations(n):
    arr = [i+1 for i in range(n)]
    valid_permutations = []
    generate_permutations(arr, 0, n-1, valid_permutations)
    return len(valid_permutations)
 
print(count_permutations(2)) # Output: 2
print(count_permutations(3)) # Output: 3


Output

2
3

Time Complexity: O(n!)
Space Complexity: O(n!)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments