Tuesday, December 31, 2024
Google search engine
HomeData Modelling & AINumber of sub-sequences of non-zero length of a binary string divisible by...

Number of sub-sequences of non-zero length of a binary string divisible by 3

Given a binary string S of length N, the task is to find the number of sub-sequences of non-zero length which are divisible by 3. Leading zeros in the sub-sequences are allowed.
Examples: 

Input: S = “1001” 
Output:
“11”, “1001”, “0”, “0” and “00” are 
the only subsequences divisible by 3.
Input: S = “1” 
Output:

Naive approach: Generate all the possible sub-sequences and check if they are divisible by 3. Time complexity for this will be O((2N) * N).
Better approach: Dynamic programming can be used to solve this problem. Let’s look at the states of the DP. 
DP[i][r] will store the number of sub-sequences of the substring S[i…N-1] such that they give a remainder of (3 – r) % 3 when divided by 3
Let’s write the recurrence relation now. 
 

DP[i][r] = DP[i + 1][(r * 2 + s[i]) % 3] + DP[i + 1][r] 
 

The recurrence is derived because of the two choices below: 
 

  1. Include the current index i in the sub-sequence. Thus, the r will be updated as r = (r * 2 + s[i]) % 3.
  2. Don’t include a current index in the sub-sequence.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100
 
int dp[N][3];
bool v[N][3];
 
// Function to return the number of
// sub-sequences divisible by 3
int findCnt(string& s, int i, int r)
{
    // Base-cases
    if (i == s.size()) {
        if (r == 0)
            return 1;
        else
            return 0;
    }
 
    // If the state has been solved
    // before then return its value
    if (v[i][r])
        return dp[i][r];
 
    // Marking the state as solved
    v[i][r] = 1;
 
    // Recurrence relation
    dp[i][r]
        = findCnt(s, i + 1, (r * 2 + (s[i] - '0')) % 3)
          + findCnt(s, i + 1, r);
 
    return dp[i][r];
}
 
// Driver code
int main()
{
    string s = "11";
 
    cout << (findCnt(s, 0, 0) - 1);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
    static final int N = 100;
     
    static int dp[][] = new int[N][3];
    static int v[][] = new int[N][3];
     
    // Function to return the number of
    // sub-sequences divisible by 3
    static int findCnt(String s, int i, int r)
    {
        // Base-cases
        if (i == s.length())
        {
            if (r == 0)
                return 1;
            else
                return 0;
        }
     
        // If the state has been solved
        // before then return its value
        if (v[i][r] == 1)
            return dp[i][r];
     
        // Marking the state as solved
        v[i][r] = 1;
     
        // Recurrence relation
        dp[i][r] = findCnt(s, i + 1, (r * 2 + (s.charAt(i) - '0')) % 3)
                    + findCnt(s, i + 1, r);
     
        return dp[i][r];
    }
     
    // Driver code
    public static void main (String[] args)
    {
        String s = "11";
     
        System.out.print(findCnt(s, 0, 0) - 1);
     
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
import numpy as np
N = 100
 
dp = np.zeros((N, 3));
v = np.zeros((N, 3));
 
# Function to return the number of
# sub-sequences divisible by 3
def findCnt(s, i, r) :
 
    # Base-cases
    if (i == len(s)) :
         
        if (r == 0) :
            return 1;
        else :
            return 0;
 
    # If the state has been solved
    # before then return its value
    if (v[i][r]) :
        return dp[i][r];
 
    # Marking the state as solved
    v[i][r] = 1;
 
    # Recurrence relation
    dp[i][r] = findCnt(s, i + 1, (r * 2 +
                      (ord(s[i]) - ord('0'))) % 3) + \
               findCnt(s, i + 1, r);
 
    return dp[i][r];
 
# Driver code
if __name__ == "__main__" :
 
    s = "11";
 
    print(findCnt(s, 0, 0) - 1);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    static readonly int N = 100;
     
    static int [,]dp = new int[N, 3];
    static int [,]v = new int[N, 3];
     
    // Function to return the number of
    // sub-sequences divisible by 3
    static int findCnt(String s, int i, int r)
    {
        // Base-cases
        if (i == s.Length)
        {
            if (r == 0)
                return 1;
            else
                return 0;
        }
     
        // If the state has been solved
        // before then return its value
        if (v[i, r] == 1)
            return dp[i, r];
     
        // Marking the state as solved
        v[i, r] = 1;
     
        // Recurrence relation
        dp[i, r] = findCnt(s, i + 1, (r * 2 + (s[i] - '0')) % 3)
                    + findCnt(s, i + 1, r);
     
        return dp[i, r];
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        String s = "11";
     
        Console.Write(findCnt(s, 0, 0) - 1);
     
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
var N = 100
 
var dp = Array.from(Array(N), ()=> Array(3));
var v = Array.from(Array(N), ()=> Array(3));
 
// Function to return the number of
// sub-sequences divisible by 3
function findCnt(s, i, r)
{
    // Base-cases
    if (i == s.length) {
        if (r == 0)
            return 1;
        else
            return 0;
    }
 
    // If the state has been solved
    // before then return its value
    if (v[i][r])
        return dp[i][r];
 
    // Marking the state as solved
    v[i][r] = 1;
 
    // Recurrence relation
    dp[i][r]
        = findCnt(s, i + 1, (r * 2 + (s[i] - '0')) % 3)
          + findCnt(s, i + 1, r);
 
    return dp[i][r];
}
 
// Driver code
var s = "11";
document.write( (findCnt(s, 0, 0) - 1));
 
</script>


Output: 

1

 

Time Complexity: O(n)
Auxiliary Space: O(n * 3) ⇒ O(n), where n is the length of the given string.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments