Friday, January 10, 2025
Google search engine
HomeData Modelling & AILength of smallest meeting that can be attended

Length of smallest meeting that can be attended

Given a 2D array arr[][] of the form {start, end} representing the start and end time of N meetings, also given two arrays entrance[] and exist[] representing the opening and closing times of the meeting room respectively, the task is to find the minimum time for which a meeting can be attended. If it is not possible to attend any meeting, then print -1.

Examples:

Input: arr[][] = {{15, 19}, {5, 10}, {7, 25}}, entrance[] = {4, 13, 25, 2}, exist[] = {10, 21}
Output: 6
Explanation: 
Meeting 1: Enter at the time 13, attend the meeting in the interval (15, 19) and exit at the time 21. Therefore, total time spent in the meeting = 21 – 13 = 8.
Meeting 2: Enter at the time 4, attend the meeting in (5, 10) and exit at the time 10. Therefore, total time spent in the meeting = 10 – 4 = 6.
Meeting 3: Enter at the time 4, attend the meeting in the interval (7, 25). But after the time 25 there is no closing time. Therefore, total time spent is infinite.
Therefore, minimum units of time that can be spent to attend a meeting is 6.

Input: arr[][] = {{1, 2}}, entrance[] = {1, 2}, exist[] = {3, 4}
Output:
 

Naive Approach: The simplest approach to solve this problem is to traverse arr[][] and for each interval {starti, endi}, find the value which just smaller than or equal to arr[i][0] in the array entrance[]. Also, find the value which is just greater than or equal to arr[i][1] in the array exist[]. Finally, print the minimum time to attend exactly one meeting.

Time Complexity: O(N*max(P, M)), where M and P are the size of entrance[]and exist[] arrays.
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach the idea is to use Sorting Algorithm and Binary Search technique
Follow the steps below to solve the problem:

  1. Sort the arrays entrance[] and exist[] in increasing order.
  2. Initialize a variable ans to store the minimum time to attend exactly one meeting.
  3. Traverse the array and for each interval of the meetings, find the value which is just smaller than or equal to starti in the entrance[] array using upper_bound and find the value which is just greater than or equal to endiin the exist[] array using lower_bound.
  4. Finally, print the minimum time to attend exactly one meeting.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum time to
// attend exactly one meeting
int minTime(int meeting[][2], int n,
          vector<int> entrance, int m,
             vector<int> &exit, int p)
{
 
    // Stores minimum time to attend
    // exactly one meeting
    int ans = INT_MAX;
 
    // Sort entrance[] array
    sort(entrance.begin(), entrance.end());
 
    // Sort exit[] time
    sort(exit.begin(), exit.end());
 
    // Traverse meeting[][]
    for (int i = 0; i < n; i++) {
         
        // Stores start time of
        // current meeting
        int u = meeting[i][0];
         
        // Stores end time of
        // current meeting
        int v = meeting[i][1];
 
        // Find just greater value of
        // u in entrance[]
        auto it1
          = upper_bound(entrance.begin(),
                     entrance.end(), u);
 
        // Find just greater or equal value
        //  of u in entrance[]
        auto it2
            = lower_bound(exit.begin(),
                         exit.end(), v);
 
        // Stores enter time to attend
        // the current meeting
        int start = it1
              - entrance.begin() - 1;
               
               
        // Stores exist time after
        // attending the meeting   
        int end = it2 - exit.begin();
 
        // Update start lies in range [0, m -1]
        // and end lies in the range [0, p - 1]
        if (start >= 0 && start < m &&
                          end >= 0 && end < p)
                           
            // Update ans             
            ans = min(ans,
                  exit[end] - entrance[start]);
    }
 
    // Return answer
    return ans >= INT_MAX ? -1 : ans;
}
 
// Driver Code
int main()
{
 
    // Stores interval of meeting
    int meeting[][2]
        = { { 15, 19 }, { 5, 10 }, { 7, 25 } };
 
    // Stores entrance timings
    vector<int> entrance = { 4, 13, 25, 2 };
 
    // Stores exit timings
    vector<int> exit = { 10, 25 };
 
    // Stores total count of  meetings
    int n = (sizeof(meeting))
               / sizeof(meeting[0]);
 
    // Stores total entrance timings
    int m = entrance.size();
 
    // Stores total exit timings
    int p = exit.size();
 
    // Minimum time
    cout << minTime(meeting, n, entrance,
                               m, exit, p)
         << endl;
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
   
static Vector<Integer> exit =
       new Vector<>();
   
// Function to find the
// minimum time to attend
// exactly one meeting
static int minTime(int meeting[][], int n,
                   int[] entrance, int m,
                   int p)
{
  // Stores minimum time to attend
  // exactly one meeting
  int ans = Integer.MAX_VALUE;
 
  // Sort entrance[] array
  Arrays.sort(entrance);
 
  // Sort exit[] time
  Collections.sort(exit);
 
  // Traverse meeting[][]
  for (int i = 0; i < n; i++)
  {
    // Stores start time of
    // current meeting
    int u = meeting[i][0];
 
    // Stores end time of
    // current meeting
    int v = meeting[i][1];
 
    // Find just greater value of
    // u in entrance[]
    int it1 = upper_bound(entrance, 0,
                          entrance.length, u);
 
    // Find just greater or equal
    // value of u in entrance[]
    int it2 = lowerBound(exit, 0,
                         exit.size(), v);
     
    // System.out.println(exit.size());
    // Stores enter time to attend
    // the current meeting
    int start = it1 - 1  ;
 
    // Stores exist time after
    // attending the meeting   
    int end = it2 ;
 
    // Update start lies in range [0, m -1]
    // and end lies in the range [0, p - 1]
    if (start >= 0 && start < m &&
        end >= 0 && end < p)
 
      // Update ans   
      ans = Math.min(ans,
                     exit.get(end) -
                     entrance[start]);
  }
 
  // Return answer
  return ans >= Integer.MAX_VALUE ?
         -1 : ans;
}
 
static int upper_bound(int[] a, int low,
                       int high, int element)
{
  while(low < high)
  {
    int middle = low +
                 (high - low) / 2;
     
    if(a[middle] > element)
      high = middle;
    else
      low = middle + 1;
  }
  return low;
}
 
static int lowerBound(Vector<Integer> vec,
                      int low, int high,
                      int element)
{
  int [] array =
         new int[vec.size()];
  int k = 0;
   
  for(Integer val : vec)
  {
    array[k] = val;
    k++;
  }
   
  // vec.clear();
  while (low < high)
  {
    int middle = low +
                 (high - low) / 2;
     
    if (element > array[middle])
    {
      low = middle + 1;
    } else
    {
      high = middle;
    }
  }
  return low;
}
 
// Driver Code
public static void main(String[] args)
{
  // Stores interval of meeting
  int meeting[][] = {{15, 19},
                     {5, 10},
                     {7, 25}};
 
  // Stores entrance timings
  int []entrance = {4, 13, 25, 2};
 
  // Stores exit timings
  exit.add(10);
  exit.add(25);
 
  // Stores total count of
  // meetings
  int n = meeting.length;
 
  // Stores total entrance
  // timings
  int m = entrance.length;
 
  // Stores total exit
  // timings
  int p = exit.size();
   
  // Minimum time
  System.out.print(minTime(meeting, n,
                           entrance, m,
                           p) + "\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
from bisect import bisect_left, bisect_right
import sys
 
# Function to find the minimum time to
# attend exactly one meeting
def minTime(meeting, n, entrance, m, exit, p):
     
    # Stores minimum time to attend
    # exactly one meeting
    ans = sys.maxsize
 
    # Sort entrance[] array
    entrance = sorted(entrance)
 
    # Sort exit[] time
    exit = sorted(exit)
     
    # Traverse meeting[][]
    for i in range(n):
         
        # Stores start time of
        # current meeting
        u = meeting[i][0]
         
        # Stores end time of
        # current meeting
        v = meeting[i][1]
 
        # Find just greater value of
        # u in entrance[]
        it1 = bisect_right(entrance, u)
         
        # Find just greater or equal value
        # of u in entrance[]
        it2 = bisect_left(exit, v)
         
        # Stores enter time to attend
        # the current meeting
        start = it1 - 1
         
        # Stores exist time after
        # attending the meeting
        end = it2
         
        # Update start lies in range [0, m -1]
        # and end lies in the range [0, p - 1]
        if (start >= 0 and start < m and
              end >= 0 and end < p):
                   
            # Update ans
            ans = min(ans, exit[end] -
                       entrance[start])
                        
    if ans >= sys.maxsize:
        ans = -1
         
    # Return answer
    return ans
     
# Driver Code
if __name__ == '__main__':
     
    # Stores interval of meeting
    meeting = [ [ 15, 19 ], [ 5, 10 ], [ 7, 25 ] ]
     
    # Stores entrance timings
    entrance = [ 4, 13, 25, 2 ]
     
    # Stores exit timings
    exit = [ 10, 25 ]
     
    # Stores total count of  meetings
    n = len(meeting)
 
    # Stores total entrance timings
    m = len(entrance)
 
    # Stores total exit timings
    p = len(exit)
 
    # Minimum time
    print(minTime(meeting, n, entrance,
                  m, exit, p))
 
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
   
static List<int> exit = new List<int>();
   
// Function to find the
// minimum time to attend
// exactly one meeting
static int minTime(int [,]meeting, int n,
                   int[] entrance, int m,
                   int p)
{
   
  // Stores minimum time to attend
  // exactly one meeting
  int ans = int.MaxValue;
 
  // Sort entrance[] array
  Array.Sort(entrance);
 
  // Sort exit[] time
  exit.Sort();
 
  // Traverse meeting[,]
  for(int i = 0; i < n; i++)
  {
     
    // Stores start time of
    // current meeting
    int u = meeting[i, 0];
 
    // Stores end time of
    // current meeting
    int v = meeting[i, 1];
 
    // Find just greater value of
    // u in entrance[]
    int it1 = upper_bound(entrance, 0,
                          entrance.Length, u);
 
    // Find just greater or equal
    // value of u in entrance[]
    int it2 = lowerBound(exit, 0,
                         exit.Count, v);
     
    // Console.WriteLine(exit.Count);
    // Stores enter time to attend
    // the current meeting
    int start = it1 - 1;
 
    // Stores exist time after
    // attending the meeting   
    int end = it2;
 
    // Update start lies in range [0, m -1]
    // and end lies in the range [0, p - 1]
    if (start >= 0 && start < m &&
          end >= 0 && end < p)
 
      // Update ans   
      ans = Math.Min(ans,
                     exit[end] -
                     entrance[start]);
  }
 
  // Return answer
  return ans >= int.MaxValue ?
          -1 : ans;
}
 
static int upper_bound(int[] a, int low,
                       int high, int element)
{
  while (low < high)
  {
    int middle = low + (high - low) / 2;
     
    if (a[middle] > element)
      high = middle;
    else
      low = middle + 1;
  }
  return low;
}
 
static int lowerBound(List<int> vec,
                      int low, int high,
                      int element)
{
  int [] array = new int[vec.Count];
  int k = 0;
   
  foreach(int val in vec)
  {
    array[k] = val;
    k++;
  }
   
  // vec.Clear();
  while (low < high)
  {
    int middle = low + (high - low) / 2;
     
    if (element > array[middle])
    {
      low = middle + 1;
    }
    else
    {
      high = middle;
    }
  }
  return low;
}
 
// Driver Code
public static void Main(String[] args)
{
   
  // Stores interval of meeting
  int [,]meeting = { { 15, 19 },
                     { 5, 10 },
                     { 7, 25 } };
 
  // Stores entrance timings
  int []entrance = { 4, 13, 25, 2 };
   
  // Stores exit timings
  exit.Add(10);
  exit.Add(25);
 
  // Stores total count of
  // meetings
  int n = meeting.GetLength(0);
 
  // Stores total entrance
  // timings
  int m = entrance.Length;
 
  // Stores total exit
  // timings
  int p = exit.Count;
   
  // Minimum time
  Console.Write(minTime(meeting, n,
                        entrance, m,
                        p) + "\n");
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to implement
// the above approach
let exit = [];
 
// Function to find the
// minimum time to attend
// exactly one meeting
function minTime(meeting, n, entrance, m, p)
{
     
    // Stores minimum time to attend
    // exactly one meeting
    let ans = Number.MAX_VALUE;
     
    // Sort entrance[] array
    (entrance).sort(function(a, b){return a - b;});
     
    // Sort exit[] time
    (exit).sort(function(a, b){return a - b;});
     
    // Traverse meeting[][]
    for(let i = 0; i < n; i++)
    {
         
        // Stores start time of
        // current meeting
        let u = meeting[i][0];
         
        // Stores end time of
        // current meeting
        let v = meeting[i][1];
         
        // Find just greater value of
        // u in entrance[]
        let it1 = upper_bound(entrance, 0,
                              entrance.length, u);
         
        // Find just greater or equal
        // value of u in entrance[]
        let it2 = lowerBound(exit, 0,
                             exit.length, v);
          
        // System.out.println(exit.size());
        // Stores enter time to attend
        // the current meeting
        let start = it1 - 1;
         
        // Stores exist time after
        // attending the meeting  
        let end = it2;
         
        // Update start lies in range [0, m -1]
        // and end lies in the range [0, p - 1]
        if (start >= 0 && start < m &&
            end >= 0 && end < p)
         
          // Update ans  
          ans = Math.min(ans,
                         exit[end] -
                         entrance[start]);
    }
     
    // Return answer
    return ans >= Number.MAX_VALUE ?
            -1 : ans;
}
 
function upper_bound(a, low, high, element)
{
    while(low < high)
    {
        let middle = low +
             Math.floor((high - low) / 2);
         
        if (a[middle] > element)
            high = middle;
        else
            low = middle + 1;
    }
    return low;
}
 
function lowerBound(vec, low, high, element)
{
    let array = new Array(vec.length);
    let k = 0;
     
    for(let val = 0; val < vec.length; val++)
    {
        array[k] = vec[val];
        k++;
    }
     
    // vec.clear();
    while (low < high)
    {
        let middle = low +
        Math.floor((high - low) / 2);
         
        if (element > array[middle])
        {
            low = middle + 1;
        }
        else
        {
            high = middle;
        }
    }
    return low;
}
 
// Driver Code   
 
// Stores interval of meeting
let meeting = [ [ 15, 19 ],
                [ 5, 10 ],
                [ 7, 25 ] ];
                 
// Stores entrance timings
let entrance = [ 4, 13, 25, 2 ];
 
// Stores exit timings
exit.push(10);
exit.push(25);
 
// Stores total count of
// meetings
let n = meeting.length;
 
// Stores total entrance
// timings
let m = entrance.length;
 
// Stores total exit
// timings
let p = exit.length;
 
// Minimum time
document.write(minTime(meeting, n, entrance,
                       m, p) + "<br>");
 
// This code is contributed by unknown2108
 
</script>


Output: 

6

 

Time Complexity: O(N * max(logP, logM)) where M and P are the lengths of entrance[] and exist[] arrays.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments