Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if a number can be represented as a sum of a...

Check if a number can be represented as a sum of a Prime Number and a Perfect Square

Given a positive integer N, the task is to check if N can be represented as a sum of a Prime Number and a Perfect Square or not. If it is possible to represent N in required form, then print “Yes”. Otherwise, print “No”.

Examples:

Input: N = 27
Output: Yes
Explanation: 27 can be expressed as sum of 2 (prime) and 25 (perfect square).

Input: N = 64
Output: No

Naive Approach: The simplest approach to solve the given problem is to store all perfect squares which are less than or equal to N in an array. For every perfect square in the array, say X, check if (N – X) is a prime number or not. If found to be true, then print “Yes”. Otherwise, print “No”.

Algorithm:

  •   Create a function isPrime(n) that accepts an integer n as input and returns true if the supplied number is prime, otherwise false.
  • Inside the isPrime(n) :
    • If the given number n is less than or equal to 1, return false as it is not a prime number.
    • Return true if the given number n is a prime number and is less than or equal to 3.
    •  If the number n is not a prime number and is divisible by 2 or 3, return false.
    •  Repeat this process for each 6th number in the range [5, sqrt(N)]. Return false if n is discovered to be non-prime. Otherwise, return true.                                                                                                                                                       
  • Create a function sumOfPrimeSquare(n) that takes an integer n as input and returns nothing.                                                
  •  Inside sumOfPrimeSquare(n) function.
    • Initialize the integer variable i to 0 
    •  Create squares ArrayList to hold all perfect squares with a size smaller than N.
    •  Place the ideal square in the squares ArrayList while i * i < n.
    • Set a boolean variable flag’s initial value to false.
    • Go through each perfect square in the squares ArrayList iteratively:
      • Put the perfect square difference from n in the difference variable.
      •  Update the flag to true and exit the loop if the difference is prime.
    • Print “Yes” if N is the product of a prime number and a perfect square. Print “No” if not.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a
// number is prime or not
bool isPrime(int n)
{
    // Base Cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return true;
 
    // Check if n is divisible by 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over every 6 number
    // from the range [5, sqrt(N)]
    for (int i = 5; i * i <= n;
         i = i + 6) {
 
        // If n is found to be non-prime
        if (n % i == 0
            || n % (i + 2) == 0) {
            return false;
        }
    }
 
    // Otherwise, return true
    return true;
}
 
// Function to check if a number can
// be represented as the sum of a prime
// number and a perfect square or not
void sumOfPrimeSquare(int n)
{
    int i = 0;
 
    // Stores all perfect
    // squares less than N
    vector<int> squares;
    while (i * i < n) {
 
        // Store the perfect square
        // in the array
        squares.push_back(i * i);
        i++;
    }
 
    bool flag = false;
 
    // Iterate over all perfect squares
    for (i = 0; i < squares.size(); i++) {
 
        // Store the difference of
        // perfect square from n
        int difference = n - squares[i];
 
        // If difference is prime
        if (isPrime(difference)) {
 
            // Update flag
            flag = true;
 
            // Break out of the loop
            break;
        }
    }
 
    // If N is the sum of a prime
    // number and a perfect square
    if (flag) {
        cout << "Yes";
    }
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    int N = 27;
    sumOfPrimeSquare(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if a
// number is prime or not
static boolean isPrime(int n)
{
     
    // Base Cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return true;
 
    // Check if n is divisible by 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over every 6 number
    // from the range [5, sqrt(N)]
    for(int i = 5; i * i <= n;
            i = i + 6)
    {
         
        // If n is found to be non-prime
        if (n % i == 0 || n % (i + 2) == 0)
        {
            return false;
        }
    }
 
    // Otherwise, return true
    return true;
}
 
// Function to check if a number can
// be represented as the sum of a prime
// number and a perfect square or not
static void sumOfPrimeSquare(int n)
{
    int i = 0;
 
    // Stores all perfect
    // squares less than N
    ArrayList<Integer> squares = new ArrayList<Integer>();
     
    while (i * i < n)
    {
         
        // Store the perfect square
        // in the array
        squares.add(i * i);
        i++;
    }
 
    boolean flag = false;
 
    // Iterate over all perfect squares
    for(i = 0; i < squares.size(); i++)
    {
         
        // Store the difference of
        // perfect square from n
        int difference = n - squares.get(i);
 
        // If difference is prime
        if (isPrime(difference))
        {
             
            // Update flag
            flag = true;
 
            // Break out of the loop
            break;
        }
    }
 
    // If N is the sum of a prime
    // number and a perfect square
    if (flag)
    {
        System.out.print("Yes");
    }
    else
        System.out.print("No");
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 27;
     
    sumOfPrimeSquare(N);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
from math import sqrt
 
# Function to check if a
# number is prime or not
def isPrime(n):
     
    # Base Cases
    if (n <= 1):
        return False
 
    if (n <= 3):
        return True
 
    # Check if n is divisible by 2 or 3
    if (n % 2 == 0 or n % 3 == 0):
        return False
 
    # Iterate over every 6 number
    # from the range [5, sqrt(N)]
    for i in range(5, int(sqrt(n)) + 1, 6):
         
        # If n is found to be non-prime
        if (n % i == 0 or n % (i + 2) == 0):
            return False
 
    # Otherwise, return true
    return True
 
# Function to check if a number can
# be represented as the sum of a prime
# number and a perfect square or not
def sumOfPrimeSquare(n):
     
    i = 0
 
    # Stores all perfect
    # squares less than N
    squares = []
     
    while (i * i < n):
         
        # Store the perfect square
        # in the array
        squares.append(i * i)
        i += 1
 
    flag = False
 
    # Iterate over all perfect squares
    for i in range(len(squares)):
         
        # Store the difference of
        # perfect square from n
        difference = n - squares[i]
 
        # If difference is prime
        if (isPrime(difference)):
             
            # Update flag
            flag = True
 
            # Break out of the loop
            break
 
    # If N is the sum of a prime
    # number and a perfect square
    if (flag):
        print("Yes")
    else:
        print("No")
 
# Driver Code
if __name__ == '__main__':
     
    N = 27
     
    sumOfPrimeSquare(N)
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
 
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to check if a
// number is prime or not
static bool isPrime(int n)
{
   
    // Base Cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return true;
 
    // Check if n is divisible by 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over every 6 number
    // from the range [5, sqrt(N)]
    for (int i = 5; i * i <= n;
         i = i + 6) {
 
        // If n is found to be non-prime
        if (n % i == 0
            || n % (i + 2) == 0) {
            return false;
        }
    }
 
    // Otherwise, return true
    return true;
}
 
// Function to check if a number can
// be represented as the sum of a prime
// number and a perfect square or not
static void sumOfPrimeSquare(int n)
{
    int i = 0;
 
    // Stores all perfect
    // squares less than N
    List<int> squares = new List<int>();
    while (i * i < n) {
 
        // Store the perfect square
        // in the array
        squares.Add(i * i);
        i++;
    }
 
    bool flag = false;
 
    // Iterate over all perfect squares
    for (i = 0; i < squares.Count; i++) {
 
        // Store the difference of
        // perfect square from n
        int difference = n - squares[i];
 
        // If difference is prime
        if (isPrime(difference)) {
 
            // Update flag
            flag = true;
 
            // Break out of the loop
            break;
        }
    }
 
    // If N is the sum of a prime
    // number and a perfect square
    if (flag) {
        Console.Write("Yes");
    }
    else
       Console.Write("No");
}
 
// Driver Code
public static void Main()
{
    int N = 27;
    sumOfPrimeSquare(N);
}
}
 
// This code is contributed by ipg2016107.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to check if a
// number is prime or not
function isPrime(n)
{
     
    // Base Cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return true;
 
    // Check if n is divisible by 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over every 6 number
    // from the range [5, sqrt(N)]
    for(let i = 5; i * i <= n;
            i = i + 6)
    {
         
        // If n is found to be non-prime
        if (n % i == 0 || n % (i + 2) == 0)
        {
            return false;
        }
    }
 
    // Otherwise, return true
    return true;
}
 
// Function to check if a number can
// be represented as the sum of a prime
// number and a perfect square or not
function sumOfPrimeSquare(n)
{
    let i = 0;
     
    // Stores all perfect
    // squares less than N
    let squares = [];
     
    while (i * i < n)
    {
         
        // Store the perfect square
        // in the array
        squares.push(i * i);
        i++;
    }
 
    let flag = false;
 
    // Iterate over all perfect squares
    for(i = 0; i < squares.length; i++)
    {
         
        // Store the difference of
        // perfect square from n
        let difference = n - squares[i];
 
        // If difference is prime
        if (isPrime(difference))
        {
             
            // Update flag
            flag = true;
 
            // Break out of the loop
            break;
        }
    }
 
    // If N is the sum of a prime
    // number and a perfect square
    if (flag)
    {
        document.write("Yes");
    }
    else
        document.write("No");
}
 
// Driver Code
let N = 27;
 
sumOfPrimeSquare(N);
 
// This code is contributed by rishavmahato348
 
</script>


Output: 

Yes

 

Time Complexity: O(N)
Auxiliary Space: O(?N)

Efficient Approach: The above approach can be optimized by storing all the prime numbers smaller than N in an array, using Sieve of Eratosthenes. If there exists any prime number, say X, check if (N – X) is a perfect square or not. If found to be true, then print “Yes”. Otherwise, print “No”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to store all prime
// numbers less than or equal to N
void SieveOfEratosthenes(bool prime[],
                         int n)
{
    // Update prime[0] and
    // prime[1] as false
    prime[0] = false;
    prime[1] = false;
 
    // Iterate over the range [2, sqrt(N)]
    for (int p = 2; p * p <= n; p++) {
 
        // If p is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            // which are <= n as non-prime
            for (int i = p * p; i <= n;
                 i += p) {
 
                prime[i] = false;
            }
        }
    }
}
 
// Function to check whether a number
// can be represented as the sum of a
// prime number and a perfect square
void sumOfPrimeSquare(int n)
{
    bool flag = false;
 
    // Stores all the prime numbers
    // less than or equal to n
    bool prime[n + 1];
    memset(prime, true, sizeof(prime));
 
    // Update the array prime[]
    SieveOfEratosthenes(prime, n);
 
    // Iterate over the range [0, n]
    for (int i = 0; i <= n; i++) {
 
        // If current number
        // is non-prime
        if (!prime[i])
            continue;
 
        // Update difference
        int dif = n - i;
 
        // If difference is a
        // perfect square
        if (ceil((double)sqrt(dif))
            == floor((double)sqrt(dif))) {
 
            // If true, update flag
            // and break out of loop
            flag = true;
            break;
        }
    }
 
    // If N can be expressed as sum
    // of prime number and perfect square
    if (flag) {
        cout << "Yes";
    }
    else
        cout << "No";
}
 
// Driver Code
int main()
{
    int N = 27;
    sumOfPrimeSquare(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to store all prime
// numbers less than or equal to N
static void SieveOfEratosthenes(boolean prime[],
                                int n)
{
     
    // Update prime[0] and
    // prime[1] as false
    prime[0] = false;
    prime[1] = false;
 
    // Iterate over the range [2, Math.sqrt(N)]
    for(int p = 2; p * p <= n; p++)
    {
         
        // If p is a prime
        if (prime[p] == true)
        {
             
            // Update all multiples of p
            // which are <= n as non-prime
            for(int i = p * p; i <= n; i += p)
            {
                prime[i] = false;
            }
        }
    }
}
 
// Function to check whether a number
// can be represented as the sum of a
// prime number and a perfect square
static void sumOfPrimeSquare(int n)
{
    boolean flag = false;
 
    // Stores all the prime numbers
    // less than or equal to n
    boolean []prime = new boolean[n + 1];
    for(int i = 0; i < prime.length; i++)
        prime[i] = true;
 
    // Update the array prime[]
    SieveOfEratosthenes(prime, n);
 
    // Iterate over the range [0, n]
    for(int i = 0; i <= n; i++)
    {
         
        // If current number
        // is non-prime
        if (!prime[i])
            continue;
 
        // Update difference
        int dif = n - i;
 
        // If difference is a
        // perfect square
        if (Math.ceil((double)Math.sqrt(dif)) ==
           Math.floor((double)Math.sqrt(dif)))
        {
 
            // If true, update flag
            // and break out of loop
            flag = true;
            break;
        }
    }
 
    // If N can be expressed as sum
    // of prime number and perfect square
    if (flag)
    {
        System.out.print("Yes");
    }
    else
        System.out.print("No");
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 27;
    sumOfPrimeSquare(N);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
import math
 
# Function to store all prime
# numbers less than or equal to N
def SieveOfEratosthenes(prime, n):
     
    # Update prime[0] and
    # prime[1] as false
    prime[0] = False
    prime[1] = False
 
    # Iterate over the range [2, sqrt(N)]
    for p in range(2, int(n ** (1 / 2))):
         
        # If p is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            # which are <= n as non-prime
            for i in range(p ** 2, n + 1, p):
                prime[i] = False
 
# Function to check whether a number
# can be represented as the sum of a
# prime number and a perfect square
def sumOfPrimeSquare(n):
     
    flag = False
 
    # Stores all the prime numbers
    # less than or equal to n
    prime = [True] * (n + 1)
 
    # Update the array prime[]
    SieveOfEratosthenes(prime, n)
 
    # Iterate over the range [0, n]
    for i in range(n + 1):
 
        # If current number
        # is non-prime
        if (not prime[i]):
            continue
 
        # Update difference
        dif = n - i
 
        # If difference is a
        # perfect square
        if (math.ceil(dif ** (1 / 2)) ==
           math.floor(dif ** (1 / 2))):
 
            # If true, update flag
            # and break out of loop
            flag = True
            break
 
    # If N can be expressed as sum
    # of prime number and perfect square
    if (flag):
        print("Yes")
    else:
        print("No")
 
# Driver Code
if __name__ == "__main__":
 
    N = 27
     
    sumOfPrimeSquare(N)
     
# This code is contributed by AnkThon


C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to store all prime
// numbers less than or equal to N
static void SieveOfEratosthenes(bool[] prime, int n)
{
     
    // Update prime[0] and
    // prime[1] as false
    prime[0] = false;
    prime[1] = false;
 
    // Iterate over the range [2, sqrt(N)]
    for(int p = 2; p * p <= n; p++)
    {
         
        // If p is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            // which are <= n as non-prime
            for(int i = p * p; i <= n; i += p)
            {
                prime[i] = false;
            }
        }
    }
}
 
// Function to check whether a number
// can be represented as the sum of a
// prime number and a perfect square
static void sumOfPrimeSquare(int n)
{
    bool flag = false;
 
    // Stores all the prime numbers
    // less than or equal to n
    bool[] prime = new bool[n + 1];
    Array.Fill(prime, true);
 
    // Update the array prime[]
    SieveOfEratosthenes(prime, n);
 
    // Iterate over the range [0, n]
    for(int i = 0; i <= n; i++)
    {
         
        // If current number
        // is non-prime
        if (!prime[i])
            continue;
 
        // Update difference
        int dif = n - i;
 
        // If difference is a
        // perfect square
        if (Math.Ceiling((double)Math.Sqrt(dif)) ==
            Math.Floor((double)Math.Sqrt(dif)))
        {
             
            // If true, update flag
            // and break out of loop
            flag = true;
            break;
        }
    }
 
    // If N can be expressed as sum
    // of prime number and perfect square
    if (flag)
    {
        Console.WriteLine("Yes");
    }
    else
        Console.WriteLine("No");
}
 
// Driver Code
public static void Main()
{
    int N = 27;
     
    sumOfPrimeSquare(N);
}
}
 
// This code is contributed by ukasp


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to store all prime
// numbers less than or equal to N
function SieveOfEratosthenes(prime, n)
{
     
    // Update prime[0] and
    // prime[1] as false
    prime[0] = false;
    prime[1] = false;
 
    // Iterate over the range [2, sqrt(N)]
    for(let p = 2; p * p <= n; p++)
    {
         
        // If p is a prime
        if (prime[p] == true)
        {
             
            // Update all multiples of p
            // which are <= n as non-prime
            for(let i = p * p; i <= n; i += p)
            {
                prime[i] = false;
            }
        }
    }
}
 
// Function to check whether a number
// can be represented as the sum of a
// prime number and a perfect square
function sumOfPrimeSquare(n)
{
    let flag = false;
 
    // Stores all the prime numbers
    // less than or equal to n
    let prime = new Array(n + 1).fill(true);
 
    // Update the array prime[]
    SieveOfEratosthenes(prime, n);
 
    // Iterate over the range [0, n]
    for(let i = 0; i <= n; i++)
    {
         
        // If current number
        // is non-prime
        if (!prime[i])
            continue;
 
        // Update difference
        let dif = n - i;
 
        // If difference is a
        // perfect square
        if (Math.ceil(Math.sqrt(dif)) ==
           Math.floor(Math.sqrt(dif)))
        {
             
            // If true, update flag
            // and break out of loop
            flag = true;
            break;
        }
    }
 
    // If N can be expressed as sum
    // of prime number and perfect square
    if (flag)
    {
        document.write("Yes");
    }
    else
        document.write("No");
}
 
// Driver Code
let N = 27;
 
sumOfPrimeSquare(N);
 
// This code is contributed by subhammahato348
 
</script>


Output: 

Yes

 

Time Complexity: O(N * log(log(N)))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments