Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum operations required to convert X to Y by multiplying X with...

Minimum operations required to convert X to Y by multiplying X with the given co-primes

Given four integers X, Y, P and Q such that X ? Y and gcd(P, Q) = 1. The task is to find minimum operation required to convert X to Y. In a single operation, you can multiply X with either P or Q. If it is not possible to convert X to Y then print -1.
Examples: 
 

Input: X = 12, Y = 2592, P = 2, Q = 3 
Output:
(12 * 2) -> (24 * 3) -> (72 * 2) -> (144 * 3) -> (432 * 3) -> (1296 * 2) ->2592
Input: X = 7, Y = 9, P = 2, Q = 7 
Output: -1 
There is no way we can reach 9 from 7 by 
multiplying 7 with either 2 or 7 
 

 

Approach: If Y is not divisible by X then no integral multiplication of any integer with X any number of times can lead to Y and the result is -1
Else, let d = Y / X. Now, Pa * Qb = d must hold in order to have a valid solution and the result in that case will be (a + b) else -1 if d cannot be expressed in the powers of P and Q
In order to check the condition, keep dividing d with P and Q until divisible. Now, if d = 1 in the end then the solution is possible else not.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum
// operations required
int minOperations(int x, int y, int p, int q)
{
 
    // Not possible
    if (y % x != 0)
        return -1;
 
    int d = y / x;
 
    // To store the greatest power
    // of p that divides d
    int a = 0;
 
    // While divisible by p
    while (d % p == 0) {
        d /= p;
        a++;
    }
 
    // To store the greatest power
    // of q that divides d
    int b = 0;
 
    // While divisible by q
    while (d % q == 0) {
        d /= q;
        b++;
    }
 
    // If d > 1
    if (d != 1)
        return -1;
 
    // Since, d = p^a * q^b
    return (a + b);
}
 
// Driver code
int main()
{
    int x = 12, y = 2592, p = 2, q = 3;
 
    cout << minOperations(x, y, p, q);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the minimum
    // operations required
    static int minOperations(int x, int y, int p, int q)
    {
     
        // Not possible
        if (y % x != 0)
            return -1;
     
        int d = y / x;
     
        // To store the greatest power
        // of p that divides d
        int a = 0;
     
        // While divisible by p
        while (d % p == 0)
        {
            d /= p;
            a++;
        }
     
        // To store the greatest power
        // of q that divides d
        int b = 0;
     
        // While divisible by q
        while (d % q == 0)
        {
            d /= q;
            b++;
        }
     
        // If d > 1
        if (d != 1)
            return -1;
     
        // Since, d = p^a * q^b
        return (a + b);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int x = 12, y = 2592, p = 2, q = 3;
        System.out.println(minOperations(x, y, p, q));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the minimum
# operations required
def minOperations(x, y, p, q):
 
    # Not possible
    if (y % x != 0):
        return -1
 
    d = y // x
 
    # To store the greatest power
    # of p that divides d
    a = 0
 
    # While divisible by p
    while (d % p == 0):
        d //= p
        a+=1
 
    # To store the greatest power
    # of q that divides d
    b = 0
 
    # While divisible by q
    while (d % q == 0):
        d //= q
        b+=1
 
    # If d > 1
    if (d != 1):
        return -1
 
    # Since, d = p^a * q^b
    return (a + b)
 
 
# Driver code
 
x = 12
y = 2592
p = 2
q = 3
 
print(minOperations(x, y, p, q))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the minimum
    // operations required
    static int minOperations(int x, int y, int p, int q)
    {
     
        // Not possible
        if (y % x != 0)
            return -1;
     
        int d = y / x;
     
        // To store the greatest power
        // of p that divides d
        int a = 0;
     
        // While divisible by p
        while (d % p == 0)
        {
            d /= p;
            a++;
        }
     
        // To store the greatest power
        // of q that divides d
        int b = 0;
     
        // While divisible by q
        while (d % q == 0)
        {
            d /= q;
            b++;
        }
     
        // If d > 1
        if (d != 1)
            return -1;
     
        // Since, d = p^a * q^b
        return (a + b);
    }
     
    // Driver code
    public static void Main ()
    {
        int x = 12, y = 2592, p = 2, q = 3;
        Console.Write(minOperations(x, y, p, q));
    }
}
 
// This code is contributed by anuj_67..


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return the minimum
// operations required
function minOperations(x, y, p, q){
 
    // Not possible
    if (y % x != 0)
        return -1
 
    var d = Math.floor(y / x)
 
    // To store the greatest power
    // of p that divides d
    var a = 0
 
    // While divisible by p
    while (d % p == 0){
        d = Math.floor(d / p)
        a+=1
    }
 
    // To store the greatest power
    // of q that divides d
    var b = 0
 
    // While divisible by q
    while (d % q == 0){
        d = Math.floor(d / q)
        b+=1
    }
 
    // If d > 1
    if (d != 1)
        return -1
 
    // Since, d = p^a * q^b
    return (a + b)
 
}
 
// Driver code
var x = 12
var y = 2592
var p = 2
var q = 3
 
document.write(minOperations(x, y, p, q))
 
// This code is contributed by AnkThon
 
</script>


Output: 

6

 

Auxiliary Space: O(1), since no extra space has been taken

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments