Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of persons required to be taught a single language such...

Minimum number of persons required to be taught a single language such that all pair of friends can communicate with each other

Given an integer N and two arrays A[][], representing the set of languages a person knows, and B[][], consisting of M pairs of friendships, the task is to find the minimum number of persons to be taught a single language so that every pair of friends can communicate with each other.

Examples:

Input: N = 2, A[][] = {{1}, {2}, {1, 2}}, B[][] = {{1, 2}, {1, 3}, {2, 3}}
Output: 1
Explanation:
One possible way is to teach the 1st person the language 2.
Another possible way is to teach the 2nd person the language 1.
Therefore, the minimum number of languages required to be taught is 1.

Input: N = 4, A[][] = {{2}, {1, 4}, {1, 2}, {3, 4}}, B[][] = {{1, 4}, {1, 2}, {3, 4}, {2, 3}}
Output: 2
Explanation:
One of the possible way is to teach the 1st person the language 3 or 4 and the 3rd person the language 3 or 4.
Therefore, the minimum number of languages required to be taught is 2.

 

Approach: The given problem can be solved using a Set and Map data structure to solve the given problem. 
Follow the steps below to solve the problem:

  • Define a function, say Check(A[], B[]), to check if any common element is present in the two sorted arrays or not:
    • Define two variables, say P1 and P2 to store the pointers.
    • Iterate while P1 < M and P2 < N. If A[P1] is equal to B[P2], then return true. Otherwise, if A[P1] < B[P2], increment P1 by one. Otherwise, if A[P1] > B[P2], increment P2 by 1.
    • If none of the above cases satisfy, then return false.
  • Initialize a set<int>, say S, and a map<int, int>, say mp, to store all the people who cannot communicate with their friends and count of people who know a particular language.
  • Initialize a variable, say result, to store the count of persons to be taught.
  • Traverse the array B[][] and insert the pair of people if there is no common language between them by calling the function Check(B[i][0], B[i][1]).
  • Traverse the set S of the languages a person knows and increment the count of that language in the Map mp.
  • Traverse the map<int, int> mp and update result as result = min(S.size() – it.second, result).
  • Finally, after completing the above steps, print the result.

Below is the implementation of the above approach:

C++




// C++ implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if there
// exists any common language
bool check(vector<int>& a, vector<int>& b)
{
    // Stores the size of array a[]
    int M = a.size();
 
    // Stores the size of array b[]
    int N = b.size();
 
    // Pointers
    int p1 = 0, p2 = 0;
 
    // Iterate while p1 < M and p2 < N
    while (p1 < M && p2 < N) {
 
        if (a[p1] < b[p2])
            p1++;
        else if (a[p1] > b[p2])
            p2++;
        else
            return true;
    }
    return false;
}
 
// Function to count the minimum number
// of people required to be teached
int minimumTeachings(
    int N, vector<vector<int> >& languages,
    vector<vector<int> > friendships)
{
    // Stores the size of array A[][]
    int m = languages.size();
 
    // Stores the size of array B[][]
    int t = friendships.size();
 
    // Stores all the persons with no
    // common languages with their friends
    unordered_set<int> total;
 
    // Stores count of languages
    unordered_map<int, int> overall;
 
    // Sort all the languages of
    // a person in ascending order
    for (int i = 0; i < m; i++)
        sort(languages[i].begin(),
             languages[i].end());
 
    // Traverse the array B[][]
    for (int i = 0; i < t; i++) {
        // Check if there is no common
        // language between two friends
        if (!check(languages[friendships[i][0] - 1],
                   languages[friendships[i][1] - 1])) {
 
            // Insert the persons in the Set
            total.insert(friendships[i][0]);
            total.insert(friendships[i][1]);
        }
    }
 
    // Stores the size of the Set
    int s = total.size();
 
    // Stores the count of
    // minimum persons to teach
    int result = s;
 
    // Traverse the set total
    for (auto p : total) {
 
        // Traverse A[p - 1]
        for (int i = 0;
             i < languages[p - 1].size(); i++)
 
            // Increment count of languages by one
            overall[languages[p - 1][i]]++;
    }
 
    // Traverse the map
    for (auto c : overall)
 
        // Update result
        result = min(result, s - c.second);
 
    // Return the result
    return result;
}
 
// Driver Code
int main()
{
    int N = 3;
 
    vector<vector<int> > A
        = { { 1 }, { 1, 3 }, { 1, 2 }, { 3 } };
 
    vector<vector<int> > B
        = { { 1, 4 }, { 1, 2 }, { 3, 4 }, { 2, 3 } };
 
    cout << minimumTeachings(N, A, B) << endl;
 
    return 0;
}


Java




// Java implementation of
// the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to check if there
// exists any common language
static boolean check(int a[], int b[])
{
     
    // Stores the size of array a[]
    int M = a.length;
 
    // Stores the size of array b[]
    int N = b.length;
 
    // Pointers
    int p1 = 0, p2 = 0;
 
    // Iterate while p1 < M and p2 < N
    while (p1 < M && p2 < N)
    {
        if (a[p1] < b[p2])
            p1++;
        else if (a[p1] > b[p2])
            p2++;
        else
            return true;
    }
    return false;
}
 
// Function to count the minimum number
// of people required to be teached
static int minimumTeachings(int N, int languages[][],
                            int friendships[][])
{
     
    // Stores the size of array A[][]
    int m = languages.length;
 
    // Stores the size of array B[][]
    int t = friendships.length;
 
    // Stores all the persons with no
    // common languages with their friends
    HashSet<Integer> total = new HashSet<>();
 
    // Stores count of languages
    HashMap<Integer, Integer> overall = new HashMap<>();
 
    // Sort all the languages of
    // a person in ascending order
    for(int i = 0; i < m; i++)
        Arrays.sort(languages[i]);
 
    // Traverse the array B[][]
    for(int i = 0; i < t; i++)
    {
         
        // Check if there is no common
        // language between two friends
        if (!check(languages[friendships[i][0] - 1],
                   languages[friendships[i][1] - 1]))
        {
             
            // Insert the persons in the Set
            total.add(friendships[i][0]);
            total.add(friendships[i][1]);
        }
    }
 
    // Stores the size of the Set
    int s = total.size();
 
    // Stores the count of
    // minimum persons to teach
    int result = s;
 
    // Traverse the set total
    for(int p : total)
    {
         
        // Traverse A[p - 1]
        for(int i = 0; i < languages[p - 1].length; i++)
         
            // Increment count of languages by one
            overall.put(languages[p - 1][i],
                        overall.getOrDefault(
                            languages[p - 1][i], 0) + 1);
    }
 
    // Traverse the map
    for(int k : overall.keySet())
 
        // Update result
        result = Math.min(result, s - overall.get(k));
 
    // Return the result
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3;
 
    int A[][] = { { 1 }, { 1, 3 },
                  { 1, 2 }, { 3 } };
 
    int B[][] = { { 1, 4 }, { 1, 2 },
                  { 3, 4 }, { 2, 3 } };
 
    System.out.println(minimumTeachings(N, A, B));
}
}
 
// This code is contributed by Kingash


Python3




# Python3 implementation of
# the above approach
 
# Function to check if there
# exists any common language
def check(a, b):
    # Stores the size of array a[]
    M = len(a)
 
    # Stores the size of array b[]
    N = len(b)
 
    # Pointers
    p1 = 0
    p2 = 0
 
    # Iterate while p1 < M and p2 < N
    while(p1 < M and p2 < N):
        if (a[p1] < b[p2]):
            p1 += 1
        elif(a[p1] > b[p2]):
            p2 += 1
        else:
            return True
    return False
 
# Function to count the minimum number
# of people required to be teached
def minimumTeachings(N, languages, friendships):
    # Stores the size of array A[][]
    m = len(languages)
 
    # Stores the size of array B[][]
    t = len(friendships)
 
    # Stores all the persons with no
    # common languages with their friends
    total = set()
 
    # Stores count of languages
    overall = {}
 
    # Sort all the languages of
    # a person in ascending order
    for i in range(m):
        languages[i].sort(reverse=False)
 
    # Traverse the array B[][]
    for i in range(t):
        # Check if there is no common
        # language between two friends
        if(check(languages[friendships[i][0] - 1], languages[friendships[i][1] - 1])==False):
            # Insert the persons in the Set
            total.add(friendships[i][0])
            total.add(friendships[i][1])
 
    # Stores the size of the Set
    s = len(total)
 
    # Stores the count of
    # minimum persons to teach
    result = s
 
    # Traverse the set total
    for p in total:
        # Traverse A[p - 1]
        for i in range(len(languages[p - 1])):
            # Increment count of languages by one
            if languages[p - 1][i] in overall:
              overall[languages[p - 1][i]] += 1
            else:
              overall[languages[p - 1][i]] = 1
 
    # Traverse the map
    for keys,value in overall.items():
        # Update result
        result = min(result, s - value)
 
    # Return the result
    return result
 
# Driver Code
if __name__ == '__main__':
    N = 3
 
    A =   [[1],[1, 3],[1, 2],[3]]
    B =  [[1, 4],[1, 2],[3, 4],[2, 3]]
    print(minimumTeachings(N, A, B))
     
    # This code is contributed by ipg2016107.


C#




// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to check if there
    // exists any common language
    static bool check(int[] a, int[] b)
    {
          
        // Stores the size of array a[]
        int M = a.Length;
      
        // Stores the size of array b[]
        int N = b.Length;
      
        // Pointers
        int p1 = 0, p2 = 0;
      
        // Iterate while p1 < M and p2 < N
        while (p1 < M && p2 < N)
        {
            if (a[p1] < b[p2])
                p1++;
            else if (a[p1] > b[p2])
                p2++;
            else
                return true;
        }
        return false;
    }
      
    // Function to count the minimum number
    // of people required to be teached
    static int minimumTeachings(int N, int[,] languages,
                                int[,] friendships)
    {
        // Stores the size of array A[][]
        int m = languages.Length;
        int[] arr1 = {1,2,3};
      
        // Stores the size of array B[][]
        int t = friendships.Length;
        int[] arr2 = {1,2,3};
      
        // Stores all the persons with no
        // common languages with their friends
        HashSet<int> total = new HashSet<int>();
      
        // Stores count of languages
        Dictionary<int, int> overall = new Dictionary<int, int>();
      
        // Sort all the languages of
        // a person in ascending order
        for(int i = 0; i < m; i++)
            Array.Sort(arr1);
      
        // Traverse the array B[][]
        for(int i = 0; i < t; i++)
        {
              
            // Check if there is no common
            // language between two friends
            if (!check(arr1,arr2))
            {
                  
                // Insert the persons in the Set
                total.Add(friendships[i,0]);
                total.Add(friendships[i,1]);
            }
        }
      
        // Stores the size of the Set
        int s = total.Count;
      
        // Stores the count of
        // minimum persons to teach
        int result = s+1;
      
        // Traverse the set total
        foreach(int p in total)
        {
              
            // Traverse A[p - 1]
            for(int i = 0; i < languages.GetLength(1); i++)
              
                // Increment count of languages by one
                overall[languages[p - 1,i]]+=1;
        }
      
        // Traverse the map
        foreach(KeyValuePair<int, int> k in overall)
        {
            result = Math.Min(result, s - k.Value);
        }
      
        // Return the result
        return result;
    }
 
  static void Main() {
    int N = 3;
  
    int[,] A = { { 1, 0 }, { 1, 3 },
                  { 1, 2 }, { 3, 0 } };
  
    int[,] B = { { 1, 4 }, { 1, 2 },
                  { 3, 4 }, { 2, 3 } };
  
    Console.Write(minimumTeachings(N, A, B));
  }
}


Javascript




<script>
 
// Javascript implementation of
// the above approach
 
// Function to check if there
// exists any common language
function check(a, b)
{
     
    // Stores the size of array a[]
    let M = a.length;
 
    // Stores the size of array b[]
    let N = b.length;
 
    // Pointers
    let p1 = 0, p2 = 0;
 
    // Iterate while p1 < M and p2 < N
    while (p1 < M && p2 < N)
    {
        if (a[p1] < b[p2])
            p1++;
        else if (a[p1] > b[p2])
            p2++;
        else
            return true;
    }
    return false;
}
 
// Function to count the minimum number
// of people required to be teached
function minimumTeachings(N, languages, friendships)
{
     
    // Stores the size of array A[][]
    let m = languages.length;
 
    // Stores the size of array B[][]
    let t = friendships.length;
 
    // Stores all the persons with no
    // common languages with their friends
    let total = new Set();
 
    // Stores count of languages
    let overall = new Map();
 
    // Sort all the languages of
    // a person in ascending order
    for(let i = 0; i < m; i++)
        languages[i].sort((a, b) => a - b);
 
    // Traverse the array B[][]
    for(let i = 0; i < t; i++)
    {
         
        // Check if there is no common
        // language between two friends
        if (!check(languages[friendships[i][0] - 1],
                   languages[friendships[i][1] - 1]))
        {
             
            // Insert the persons in the Set
            total.add(friendships[i][0]);
            total.add(friendships[i][1]);
        }
    }
 
    // Stores the size of the Set
    let s = total.size;
 
    // Stores the count of
    // minimum persons to teach
    let result = s;
 
    // Traverse the set total
    for(let p of total)
    {
         
        // Traverse A[p - 1]
        for(let i = 0; i < languages[p - 1].length; i++)
        {
             
            // Increment count of languages by one
            if (overall.has(languages[p - 1][i]))
            {
                overall.set(languages[p - 1][i],
                overall.get(languages[p - 1][i]) + 1)
            }
            else
            {
                overall.set(languages[p - 1][i], 1)
            }
        }
    }
 
    // Traverse the map
    for(let c of overall)
     
        // Update result
        result = Math.min(result, s - c[1]);
 
    // Return the result
    return result;
}
 
// Driver Code
let N = 3;
let A = [ [ 1 ], [ 1, 3 ],
          [ 1, 2 ], [ 3 ] ];
 
let B = [ [ 1, 4 ], [ 1, 2 ],
          [ 3, 4 ], [ 2, 3 ] ];
 
document.write(minimumTeachings(N, A, B) + "<br>");
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

1

 

Time Complexity: O(N2)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments