Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount nodes from all lower levels smaller than minimum valued node of...

Count nodes from all lower levels smaller than minimum valued node of current level for every level in a Binary Tree

Given a Binary Tree, the task is for each level is to print the total number of nodes from all lower levels which are less than or equal to every node present at that level.

Examples:

Input: Below is the given tree:
                           4
                         /   \
                      3       5
                    /  \    /  \
                 10  2  3    1

Output: 4 3 0
Explanation:
Nodes in level 1 has 4 nodes as (3) in level 2 and (2, 3, 1) in level 3. 
Nodes in level 2 has 3 nodes as (2, 3, 1) in level 3. 
Nodes in level 3 does not have any level left below it.

Input: Below is the given tree: 

                         4
                     /  \
                   7    9
                 /     /  \
               1    3    1 
 

Output: 3 3 0

Approach: Follow the steps below to solve the problem:

  1. Calculate the minimum value at every level using Level Order Traversal.
  2. Perform Post Order Traversal on the tree and check for every node whether nodes computed in step 1 are greater than or equal to the node. If found to be true, increment count by one at that level, providing that particular level has the node present in the level below it whose value is less than or equal to all the nodes present at that level.
  3. Print the final array which gives the number of nodes for that level.

Below is the implementation of the above approach:

C++




// C++ program of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Stores the nodes to be deleted
unordered_map<int, bool> mp;
 
// Structure of a Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Function to create a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to find the min value
// of node for each level
void calculateMin(Node* root,
                  vector<int>& levelMin)
{
    queue<Node*> qt;
    qt.push(root);
 
    // Count is used to differentiate
    // each level of the tree
    int count = 1;
    int min_v = INT_MAX;
    while (!qt.empty()) {
 
        Node* temp = qt.front();
 
        min_v = min(min_v, temp->key);
 
        qt.pop();
 
        if (temp->left) {
            qt.push(temp->left);
        }
        if (temp->right) {
            qt.push(temp->right);
        }
        count--;
        if (count == 0) {
            levelMin.push_back(min_v);
            min_v = INT_MAX;
            count = qt.size();
        }
    }
}
 
// Function to check whether the nodes in
// the level below it are smaller
// by performing post order traversal
void findNodes(Node* root, vector<int>& levelMin,
               vector<int>& levelResult, int level)
{
    if (root == NULL)
        return;
 
    // Traverse the left subtree
    findNodes(root->left, levelMin,
              levelResult, level + 1);
 
    // Traverse right subtree
    findNodes(root->right, levelMin,
              levelResult, level + 1);
 
    // Check from minimum values
    // computed at each level
    for (int i = 0; i < level; i++) {
        if (root->key <= levelMin[i]) {
            levelResult[i] += 1;
        }
    }
}
 
// Function to print count of
// nodes from all lower levels
// having values less than the
// the nodes in the current level
void printNodes(Node* root)
{
    vector<int> levelMin;
    calculateMin(root, levelMin);
 
    // Stores the number of levels
    int numLevels = levelMin.size();
 
    // Stores the required count
    // of nodes for each level
    vector<int> levelResult(numLevels, 0);
    findNodes(root, levelMin, levelResult, 0);
 
    for (int i = 0; i < numLevels; i++) {
        cout << levelResult[i] << " ";
    }
}
 
// Driver Code
int main()
{
    /*
              4
           /     \
           3        5
         /  \     /   \
       10    2   3     1
      */
 
    Node* root = newNode(4);
 
    root->left = newNode(3);
    root->right = newNode(5);
 
    root->right->left = newNode(3);
    root->right->right = newNode(1);
 
    root->left->left = newNode(10);
    root->left->right = newNode(2);
    printNodes(root);
}


Java




// Java program of the
// above approach
import java.util.*;
class GFG{
 
// Stores the nodes to be deleted
static Map<Integer,
           Boolean> mp = new HashMap<Integer,
                                     Boolean>();
 
  // Structure of a Tree node
static class Node
{
  int key;
  Node left, right;
};
 
// Function to create a new node
static Node newNode(int key)
{
  Node temp = new Node();
  temp.key = key;
  temp.left = temp.right = null;
  return (temp);
}
 
// Function to find the min value
// of node for each level
static void calculateMin(Node root,
                         Vector<Integer> levelMin)
{
  Queue<Node> qt = new LinkedList<>();
  qt.add(root);
 
  // Count is used to differentiate
  // each level of the tree
  int count = 1;
  int min_v = Integer.MAX_VALUE;
  while (!qt.isEmpty())
  {
    Node temp = qt.peek();
    min_v = Math.min(min_v, temp.key);
    qt.remove();
 
    if (temp.left != null)
    {
      qt.add(temp.left);
    }
    if (temp.right != null)
    {
      qt.add(temp.right);
    }
    count--;
    if (count == 0)
    {
      levelMin.add(min_v);
      min_v = Integer.MAX_VALUE;
      count = qt.size();
    }
  }
}
 
// Function to check whether the nodes in
// the level below it are smaller
// by performing post order traversal
static void findNodes(Node root,
                      Vector<Integer> levelMin,
                      int []levelResult, int level)
{
  if (root == null)
    return;
 
  // Traverse the left subtree
  findNodes(root.left, levelMin,
            levelResult, level + 1);
 
  // Traverse right subtree
  findNodes(root.right, levelMin,
            levelResult, level + 1);
 
  // Check from minimum values
  // computed at each level
  for (int i = 0; i < level; i++)
  {
    if (root.key <= levelMin.get(i))
    {
      levelResult[i] += 1;
    }
  }
}
 
// Function to print count of
// nodes from all lower levels
// having values less than the
// the nodes in the current level
static void printNodes(Node root)
{
  Vector<Integer> levelMin =
         new Vector<Integer>();
  calculateMin(root, levelMin);
 
  // Stores the number of levels
  int numLevels = levelMin.size();
 
  // Stores the required count
  // of nodes for each level
  int []levelResult = new int[numLevels];
  findNodes(root, levelMin, levelResult, 0);
 
  for (int i = 0; i < numLevels; i++)
  {
    System.out.print(levelResult[i] + " ");
  }
}
 
// Driver Code
public static void main(String[] args)
{
  /*
              4
           /     \
           3        5
         /  \     /   \
       10    2   3     1
      */
 
  Node root = newNode(4);
 
  root.left = newNode(3);
  root.right = newNode(5);
 
  root.right.left = newNode(3);
  root.right.right = newNode(1);
 
  root.left.left = newNode(10);
  root.left.right = newNode(2);
  printNodes(root);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program of the
# above approach
from collections import deque
from sys import maxsize as INT_MAX
 
# Stores the nodes to be deleted
mp = dict()
 
# Structure of a Tree node
class Node:
     
    def __init__(self, key):
         
        self.key = key
        self.left = None
        self.right = None
 
# Function to find the min value
# of node for each level
def calculateMin(root: Node,
             levelMin: list) -> None:
 
    qt = deque()
    qt.append(root)
 
    # Count is used to differentiate
    # each level of the tree
    count = 1
    min_v = INT_MAX
     
    while (qt):
        temp = qt.popleft()
        min_v = min(min_v, temp.key)
 
        if (temp.left):
            qt.append(temp.left)
 
        if (temp.right):
            qt.append(temp.right)
 
        count -= 1
         
        if (count == 0):
            levelMin.append(min_v)
            min_v = INT_MAX
            count = len(qt)
 
# Function to check whether the nodes in
# the level below it are smaller
# by performing post order traversal
def findNodes(root: Node,
          levelMin: list,
       levelResult: list,
             level: int) -> None:
 
    if (root == None):
        return
 
    # Traverse the left subtree
    findNodes(root.left, levelMin,
              levelResult, level + 1)
 
    # Traverse right subtree
    findNodes(root.right, levelMin,
              levelResult, level + 1)
 
    # Check from minimum values
    # computed at each level
    for i in range(level):
        if (root.key <= levelMin[i]):
            levelResult[i] += 1
 
# Function to print count of
# nodes from all lower levels
# having values less than the
# the nodes in the current level
def printNodes(root: Node) -> None:
 
    levelMin = []
    calculateMin(root, levelMin)
 
    # Stores the number of levels
    numLevels = len(levelMin)
 
    # Stores the required count
    # of nodes for each level
    levelResult = [0] * numLevels
    findNodes(root, levelMin, levelResult, 0)
 
    for i in range(numLevels):
        print(levelResult[i], end = " ")
 
# Driver Code
if __name__ == "__main__":
     
    '''
              4
           /     \
          3        5
        /  \     /   \
      10    2   3     1
      '''
 
    root = Node(4)
 
    root.left = Node(3)
    root.right = Node(5)
 
    root.right.left = Node(3)
    root.right.right = Node(1)
 
    root.left.left = Node(10)
    root.left.right = Node(2)
     
    printNodes(root)
 
# This code is contributed by sanjeev2552


C#




// C# program of the
// above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Stores the nodes to be deleted
static Dictionary<int,
                  Boolean> mp = new Dictionary<int,
                                               Boolean>();
 
// Structure of a Tree node
class Node
{
    public int key;
    public Node left, right;
};
 
// Function to create a new node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    temp.left = temp.right = null;
    return (temp);
}
 
// Function to find the min value
// of node for each level
static void calculateMin(Node root,
                         List<int> levelMin)
{
    Queue<Node> qt = new Queue<Node>();
    qt.Enqueue(root);
     
    // Count is used to differentiate
    // each level of the tree
    int count = 1;
    int min_v = int.MaxValue;
     
    while (qt.Count != 0)
    {
        Node temp = qt.Peek();
        min_v = Math.Min(min_v, temp.key);
        qt.Dequeue();
     
        if (temp.left != null)
        {
            qt.Enqueue(temp.left);
        }
        if (temp.right != null)
        {
            qt.Enqueue(temp.right);
        }
        count--;
         
        if (count == 0)
        {
            levelMin.Add(min_v);
            min_v = int.MaxValue;
            count = qt.Count;
        }
    }
}
 
// Function to check whether the nodes in
// the level below it are smaller
// by performing post order traversal
static void findNodes(Node root,
                      List<int> levelMin,
                      int []levelResult,
                      int level)
{
    if (root == null)
        return;
     
    // Traverse the left subtree
    findNodes(root.left, levelMin,
              levelResult, level + 1);
     
    // Traverse right subtree
    findNodes(root.right, levelMin,
              levelResult, level + 1);
     
    // Check from minimum values
    // computed at each level
    for(int i = 0; i < level; i++)
    {
        if (root.key <= levelMin[i])
        {
            levelResult[i] += 1;
        }
    }
}
 
// Function to print count of
// nodes from all lower levels
// having values less than the
// the nodes in the current level
static void printNodes(Node root)
{
    List<int> levelMin = new List<int>();
     
    calculateMin(root, levelMin);
     
    // Stores the number of levels
    int numLevels = levelMin.Count;
     
    // Stores the required count
    // of nodes for each level
    int []levelResult = new int[numLevels];
    findNodes(root, levelMin, levelResult, 0);
     
    for(int i = 0; i < numLevels; i++)
    {
        Console.Write(levelResult[i] + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
/*
           4
         /     \
        3      5
       / \     / \
     10   2 3    1
    */
 
    Node root = newNode(4);
     
    root.left = newNode(3);
    root.right = newNode(5);
     
    root.right.left = newNode(3);
    root.right.right = newNode(1);
     
    root.left.left = newNode(10);
    root.left.right = newNode(2);
    printNodes(root);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
    // JavaScript program for the above approach
     
    // Structure of a Tree node
    class Node
    {
        constructor(key) {
           this.left = null;
           this.right = null;
           this.key = key;
        }
    }
     
    // Function to create a new node
    function newNode(key)
    {
      let temp = new Node(key);
      return (temp);
    }
 
    // Function to find the min value
    // of node for each level
    function calculateMin(root, levelMin)
    {
      let qt = [];
      qt.push(root);
 
      // Count is used to differentiate
      // each level of the tree
      let count = 1;
      let min_v = Number.MAX_VALUE;
      while (qt.length > 0)
      {
        let temp = qt[0];
        min_v = Math.min(min_v, temp.key);
        qt.shift();
 
        if (temp.left != null)
        {
          qt.push(temp.left);
        }
        if (temp.right != null)
        {
          qt.push(temp.right);
        }
        count--;
        if (count == 0)
        {
          levelMin.push(min_v);
          min_v = Number.MAX_VALUE;
          count = qt.length;
        }
      }
    }
 
    // Function to check whether the nodes in
    // the level below it are smaller
    // by performing post order traversal
    function findNodes(root, levelMin, levelResult, level)
    {
      if (root == null)
        return;
 
      // Traverse the left subtree
      findNodes(root.left, levelMin,
                levelResult, level + 1);
 
      // Traverse right subtree
      findNodes(root.right, levelMin,
                levelResult, level + 1);
 
      // Check from minimum values
      // computed at each level
      for (let i = 0; i < level; i++)
      {
        if (root.key <= levelMin[i])
        {
          levelResult[i] += 1;
        }
      }
    }
 
    // Function to print count of
    // nodes from all lower levels
    // having values less than the
    // the nodes in the current level
    function printNodes(root)
    {
      let levelMin = [];
      calculateMin(root, levelMin);
 
      // Stores the number of levels
      let numLevels = levelMin.length;
       
      // Stores the required count
      // of nodes for each level
      let levelResult = new Array(numLevels);
      levelResult.fill(0);
      findNodes(root, levelMin, levelResult, 0);
 
      for (let i = 0; i < levelResult.length; i++)
      {
        document.write(levelResult[i] + " ");
      }
    }
     
    /*
              4
           /     \
           3        5
         /  \     /   \
       10    2   3     1
      */
  
    let root = newNode(4);
 
    root.left = newNode(3);
    root.right = newNode(5);
 
    root.right.left = newNode(3);
    root.right.right = newNode(1);
 
    root.left.left = newNode(10);
    root.left.right = newNode(2);
    printNodes(root);
    
</script>


Output: 

4 3 0

Time Complexity: O(N2
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments