Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount all N-length arrays made up of distinct consecutive elements whose first...

Count all N-length arrays made up of distinct consecutive elements whose first and last elements are equal

Given two integers M and N, the task is to find the number of N-length arrays possible having non-equal adjacent elements lying in the range [1, M] having elements at first and last indices equal.

Examples: 
 

Input: N = 3, M = 3
Output: 6
Explanation:
The possible arrays are {1, 2, 1}, {1, 3, 1}, {2, 1, 2}, {2, 3, 2}, {3, 1, 3}, {3, 2, 3}.

Input: N = 5, M = 4
Output: 84

Approach: Follow the steps below to solve the problem:

  • First fix arr[0] and arr[N-1] equal to 1.
  • Now find the number of arrays possible of size i which ends with 1 (i.e., arr[i] = 1). Store this result into end_with_one[i].
  • Now, find the number of arrays possible of size i which does not end with 1 (arr[i] ? 1). Store this result into end_not_with_one[i].
  • Since, the number of ways to form the array till the ith index with arr[i] = 1, is same as the number of ways to form the array till the (i – 1)th index with arr[i – 1] ? 1, set end_with_one[i] = end_not_with_one[i – 1].
  • Now, the number of ways to form the array till the ith index with arr[i] ? 1 is as follows:
    • If arr[i – 1]= 1, there are (M – 1) numbers to be placed at the ith index.
    • If arr[i – 1] ? 1, then (M – 2) numbers can be placed at index i, since arr[i] cannot be 1 and arr[i] cannot be equal to arr[i – 1].
    • Therefore, set end_not_with_one[i] = end_with_one[i-1] * (M – 1) + end_not_with_one[i-1]* (M – 2).
  • Therefore, the number of ways to form arrays of size N with arr[0] and arr[N – 1] equal to 1 is end_with_one[N – 1].
  • Similarly, arr[0] and arr[N – 1] can be set to any element from 1 to M.
  • Therefore, the total number of arrays possible is M * end_with_one[N-1].

 

Below is the implementation of the above approach:

 

C++14




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the count of
// arrays satisfying given condition
int totalArrays(int N, int M)
{
 
    int end_with_one[N + 1];
    int end_not_with_one[N + 1];
 
    // First element of
    // array is set as 1
    end_with_one[0] = 1;
    end_not_with_one[0] = 0;
 
    // Since the first element
    // of arr[] is 1, the
    // second element can't be 1
    end_with_one[1] = 0;
    end_not_with_one[1] = M - 1;
 
    // Traverse the remaining indices
    for (int i = 2; i < N; i++) {
 
        // If arr[i] = 1
        end_with_one[i]
            = end_not_with_one[i - 1];
 
        // If arr[i] ? 1
        end_not_with_one[i]
            = end_with_one[i - 1] * (M - 1)
              + end_not_with_one[i - 1] * (M - 2);
    }
 
    // Since last element needs to be 1
    return end_with_one[N - 1];
}
 
// Driver Code
int main()
{
 
    int N = 3, M = 3;
 
    // Stores the count of arrays
    // where arr[0] = arr[N - 1] = 1
    int temp = totalArrays(N, M);
 
    // Since arr[0] and arr[N - 1]
    // can be any number from 1 to M
    int ans = M * temp;
 
    // Print answer
    cout << ans << "\n";
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to print the count of
// arrays satisfying given condition
static int totalArrays(int N, int M)
{
    int []end_with_one = new int[N + 1];
    int []end_not_with_one = new int[N + 1];
 
    // First element of
    // array is set as 1
    end_with_one[0] = 1;
    end_not_with_one[0] = 0;
 
    // Since the first element
    // of arr[] is 1, the
    // second element can't be 1
    end_with_one[1] = 0;
    end_not_with_one[1] = M - 1;
 
    // Traverse the remaining indices
    for (int i = 2; i < N; i++)
    {
 
        // If arr[i] = 1
        end_with_one[i]
            = end_not_with_one[i - 1];
 
        // If arr[i] ? 1
        end_not_with_one[i]
            = end_with_one[i - 1] * (M - 1)
              + end_not_with_one[i - 1] * (M - 2);
    }
 
    // Since last element needs to be 1
    return end_with_one[N - 1];
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3, M = 3;
 
    // Stores the count of arrays
    // where arr[0] = arr[N - 1] = 1
    int temp = totalArrays(N, M);
 
    // Since arr[0] and arr[N - 1]
    // can be any number from 1 to M
    int ans = M * temp;
 
    // Print answer
    System.out.print(ans+ "\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program for the above approach
 
# Function to print the count of
# arrays satisfying given condition
def totalArrays(N, M):
    end_with_one = [0] * (N + 1);
    end_not_with_one = [0] * (N + 1);
 
    # First element of
    # array is set as 1
    end_with_one[0] = 1;
    end_not_with_one[0] = 0;
 
    # Since the first element
    # of arr is 1, the
    # second element can't be 1
    end_with_one[1] = 0;
    end_not_with_one[1] = M - 1;
 
    # Traverse the remaining indices
    for i in range(2, N):
       
        # If arr[i] = 1
        end_with_one[i] = end_not_with_one[i - 1];
 
        # If arr[i] ? 1
        end_not_with_one[i] = end_with_one[i - 1] * (M - 1) + end_not_with_one[i - 1] * (M - 2);
 
    # Since last element needs to be 1
    return end_with_one[N - 1];
 
# Driver Code
if __name__ == '__main__':
    N = 3;
    M = 3;
 
    # Stores the count of arrays
    # where arr[0] = arr[N - 1] = 1
    temp = totalArrays(N, M);
 
    # Since arr[0] and arr[N - 1]
    # can be any number from 1 to M
    ans = M * temp;
 
    # Print answer
    print(ans);
     
# This code is contributed by 29AjayKumar


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
     
    // Function to print the count of
    // arrays satisfying given condition
    static int totalArrays(int N, int M)
    {
       
        int[] end_with_one = new int[N + 1];
        int[] end_not_with_one = new int[N + 1];
       
        // First element of
        // array is set as 1
        end_with_one[0] = 1;
        end_not_with_one[0] = 0;
       
        // Since the first element
        // of arr[] is 1, the
        // second element can't be 1
        end_with_one[1] = 0;
        end_not_with_one[1] = M - 1;
       
        // Traverse the remaining indices
        for (int i = 2; i < N; i++) {
       
            // If arr[i] = 1
            end_with_one[i]
                = end_not_with_one[i - 1];
       
            // If arr[i] ? 1
            end_not_with_one[i]
                = end_with_one[i - 1] * (M - 1)
                  + end_not_with_one[i - 1] * (M - 2);
        }
       
        // Since last element needs to be 1
        return end_with_one[N - 1];
    
 
  // Driver code
  static void Main()
  {
       
    int N = 3, M = 3;
   
    // Stores the count of arrays
    // where arr[0] = arr[N - 1] = 1
    int temp = totalArrays(N, M);
   
    // Since arr[0] and arr[N - 1]
    // can be any number from 1 to M
    int ans = M * temp;
   
    // Print answer
    Console.WriteLine(ans);
  }
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to print the count of
// arrays satisfying given condition
function totalArrays(N, M)
{
 
    var end_with_one = Array(N+1);
    var end_not_with_one = Array(N+1);
 
    // First element of
    // array is set as 1
    end_with_one[0] = 1;
    end_not_with_one[0] = 0;
 
    // Since the first element
    // of arr[] is 1, the
    // second element can't be 1
    end_with_one[1] = 0;
    end_not_with_one[1] = M - 1;
 
    // Traverse the remaining indices
    for (var i = 2; i < N; i++) {
 
        // If arr[i] = 1
        end_with_one[i]
            = end_not_with_one[i - 1];
 
        // If arr[i] ? 1
        end_not_with_one[i]
            = end_with_one[i - 1] * (M - 1)
            + end_not_with_one[i - 1] * (M - 2);
    }
 
    // Since last element needs to be 1
    return end_with_one[N - 1];
}
 
// Driver Code
 
var N = 3, M = 3;
 
// Stores the count of arrays
// where arr[0] = arr[N - 1] = 1
var temp = totalArrays(N, M);
 
// Since arr[0] and arr[N - 1]
// can be any number from 1 to M
var ans = M * temp;
 
// Print answer
document.write( ans + "<br>");
 
 
</script>


Output: 

6

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments