Friday, January 17, 2025
Google search engine
HomeData Modelling & AICount digits present in each element of a given Matrix

Count digits present in each element of a given Matrix

Given a matrix arr[][] of dimensions M * N, the task is to count the number of digits of every element present in the given matrix.

Examples:

Input: arr[][] = { { 27, 173, 5 }, { 21, 6, 624 }, { 5, 321, 49 } }
Output: 
2 3 1
2 1 3
1 3 2

Input: arr[][] = { {11, 12, 33 }, { 64, 57, 61 }, { 74, 88, 39 } }
Output: 
2 2 2
2 2 2
2 2 2

Approach: The idea to solve this problem is to traverse the given matrix and for every index of the matrix, count the number of digits of the number present at that index using the following expression:

Number of digits present in any value X is given by floor(log10(X))+1.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
const int M = 3;
const int N = 3;
 
// Function to count the number of digits
// in each element of the given matrix
void countDigit(int arr[M][N])
{
 
    // Traverse each row of arr[][]
    for (int i = 0; i < M; i++) {
 
        // Traverse each column of arr[][]
        for (int j = 0; j < N; j++) {
 
            // Store the current matrix element
            int X = arr[i][j];
 
            // Count the number of digits
            int d = floor(log10(X) * 1.0) + 1;
 
            // Print the result
            cout << d << " ";
        }
 
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    // Given matrix
    int arr[][3] = { { 27, 173, 5 },
                     { 21, 6, 624 },
                     { 5, 321, 49 } };
 
    countDigit(arr);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
static int M = 3;
static int N = 3;
 
// Function to count the number of digits
// in each element of the given matrix
static void countDigit(int arr[][])
{
 
    // Traverse each row of arr[][]
    for (int i = 0; i < M; i++)
    {
 
        // Traverse each column of arr[][]
        for (int j = 0; j < N; j++)
        {
 
            // Store the current matrix element
            int X = arr[i][j];
 
            // Count the number of digits
            int d = (int) (Math.floor(Math.log10(X) * 1.0) + 1);
 
            // Print the result
            System.out.print(d+ " ");
        }
        System.out.println();
    }
}
 
// Driver Code
public static void main(String[] args)
{
   
    // Given matrix
    int arr[][] = { { 27, 173, 5 },
                     { 21, 6, 624 },
                     { 5, 321, 49 } };
    countDigit(arr);
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program for the above approach
from math import floor, log10
 
M = 3
N = 3
 
# Function to count the number of digits
# in each element of the given matrix
def countDigit(arr):
     
    # Traverse each row of arr[][]
    for i in range(M):
 
        # Traverse each column of arr[][]
        for j in range(N):
 
            # Store the current matrix element
            X = arr[i][j]
 
            # Count the number of digits
            d = floor(log10(X) * 1.0) + 1
 
            # Print the result
            print(d, end = " ")
 
        print()
 
# Driver Code
if __name__ == '__main__':
     
    # Given matrix
    arr = [ [ 27, 173, 5 ],
            [ 21, 6, 624 ],
            [ 5, 321, 49 ] ]
 
    countDigit(arr)
 
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach 
using System;
class GFG
{
      
static int M = 3;
static int N = 3;
  
// Function to count the number of digits
// in each element of the given matrix
static void countDigit(int[,] arr)
{
  
    // Traverse each row of arr[][]
    for (int i = 0; i < M; i++)
    {
  
        // Traverse each column of arr[][]
        for (int j = 0; j < N; j++)
        {
  
            // Store the current matrix element
            int X = arr[i, j];
  
            // Count the number of digits
            int d = (int) (Math.Floor(Math.Log10(X) * 1.0) + 1);
  
            // Print the result
            Console.Write(d + " ");
        }
        Console.WriteLine();
    }
}
  
// Driver Code
public static void Main()
{
   
    // Given matrix
    int[,] arr = { { 27, 173, 5 },
                     { 21, 6, 624 },
                     { 5, 321, 49 } };
    countDigit(arr);
}
}
 
// This code is contributed by susmitakundugoaldanga


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
let M = 3;
let N = 3;
  
// Function to count the number of digits
// in each element of the given matrix
function countDigit(arr)
{
  
    // Traverse each row of arr[][]
    for (let i = 0; i < M; i++)
    {
  
        // Traverse each column of arr[][]
        for (let j = 0; j < N; j++)
        {
  
            // Store the current matrix element
            let X = arr[i][j];
  
            // Count the number of digits
            let d =  (Math.floor(Math.log10(X) * 1.0) + 1);
  
            // Print the result
            document.write(d+ " ");
        }
        document.write("<br/>");
    }
}
 
      
// Driver code
         
    // Given matrix
    let arr = [[ 27, 173, 5 ],
                     [ 21, 6, 624 ],
                     [ 5, 321, 49 ]];
    countDigit(arr);
 
</script>


Output: 

2 3 1 
2 1 3 
1 3 2

 

Time Complexity: O(M * N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments