Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIFind permutation with maximum remainder Sum

Find permutation with maximum remainder Sum

Given an integer N, the task is to find a permutation of the integers from 1 to N such that \sum_{i=1}^{N}P_i\mod i      is maximum.

Examples: 

Input: N = 3 
Output: 3 1 2 
Sum of the remainder values is (0 + 1 + 2) = 3 
which is the maximum possible.
Input: N = 5 
Output: 5 1 2 3 4 

Approach:

As it is known that the maximum value of a number X after doing the mod with Y is Y-1. The permutation that will yield the maximum sum of the modulus values will be {N, 1, 2, 3, …., N – 1}. After evaluating the expression P_i\mod i      on the above array the output array will be {0, 1, 2, 3, …., N – 1} and this is the maximum value that can be obtained.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the permutation
vector<int> Findpermutation(int n)
{
    vector<int> a(n + 1);
  
    // Put n at the first index 1
    a[1] = n;
  
    // Put all the numbers from
    // 2 to n sequentially
    for (int i = 2; i <= n; i++)
        a[i] = i - 1;
  
    return a;
}
  
// Driver code
int main()
{
    int n = 8;
  
    vector<int> v = Findpermutation(n);
  
    // Display the permutation
    for (int i = 1; i <= n; i++)
        cout << v[i] << ' ';
  
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG 
{
  
// Function to find the permutation
static int[] Findpermutation(int n)
{
    int [] a = new int[n + 1];
  
    // Put n at the first index 1
    a[1] = n;
  
    // Put all the numbers from
    // 2 to n sequentially
    for (int i = 2; i <= n; i++)
        a[i] = i - 1;
  
    return a;
}
  
// Driver code
public static void main(String[] args) 
{
    int n = 8;
  
    int []v = Findpermutation(n);
  
    // Display the permutation
    for (int i = 1; i <= n; i++)
        System.out.print(v[i] + " ");
}
  
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach 
  
# Function to find the permutation 
def Findpermutation(n) :
  
    a = [0] * (n + 1); 
  
    # Put n at the first index 1 
    a[1] = n; 
  
    # Put all the numbers from 
    # 2 to n sequentially 
    for i in range(2, n + 1) :
        a[i] = i - 1
  
    return a; 
  
# Driver code 
if __name__ == "__main__"
  
    n = 8
  
    v = Findpermutation(n); 
  
    # Display the permutation 
    for i in range(1, n + 1) :
        print(v[i], end = ' '); 
  
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
  
class GFG 
{
  
// Function to find the permutation
static int[] Findpermutation(int n)
{
    int [] a = new int[n + 1];
  
    // Put n at the first index 1
    a[1] = n;
  
    // Put all the numbers from
    // 2 to n sequentially
    for (int i = 2; i <= n; i++)
        a[i] = i - 1;
  
    return a;
}
  
// Driver code
public static void Main(String[] args) 
{
    int n = 8;
  
    int []v = Findpermutation(n);
  
    // Display the permutation
    for (int i = 1; i <= n; i++)
        Console.Write(v[i] + " ");
}
}
  
// This code is contributed by 29AjayKumar


Javascript




<script>
  
// Javascript implementation of the approach
  
// Function to find the permutation
function Findpermutation(n)
{
    let a = new Array(n + 1);
  
    // Put n at the first index 1
    a[1] = n;
  
    // Put all the numbers from
    // 2 to n sequentially
    for (let i = 2; i <= n; i++)
        a[i] = i - 1;
  
    return a;
}
  
// Driver code
    let n = 8;
  
    let v = Findpermutation(n);
  
    // Display the permutation
    for (let i = 1; i <= n; i++)
        document.write(v[i] + ' ');
  
</script>


Output: 

8 1 2 3 4 5 6 7

 

Time Complexity: O(N), Space Complexity: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments