Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIJunction Numbers

Junction Numbers

Junction Number is a number N if it can be written as K + SumOfDIgits(k) for at least two K.
 

101, 103, 105, 107, 109, 111, 113, 115…. 
 

 

Check if a number N is an Junction Number

Given a number N, the task is to check if N is an Junction Number or not. If N is an Junction Number then print “Yes” else print “No”.
Examples: 
 

Input: N = 1106 
Output: Yes 
Explanation: 
1106 = 1093 + (1+0+9+3) = 1102 + (1+1+0+2)
Input: N = 11 
Output: No 
 

 

Approach: Since Junction Number is a number N if it can be written as K + SumOfDIgits(k) for at least two K. So for all numbers from 1 to N in a loop we will check if i + sumOfdigitsof(i) equals to N or not. If equals to N print “Yes” else print “No”.
Below is the implementation of the above approach:
 

C++




// C++ implementation for the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// sum Of digits of N
int sum(int n)
{
 
    // To store sum of N and
    // sumOfdigitsof(N)
    int sum = 0;
 
    while (n != 0) {
        // extracting digit
        int r = n % 10;
        sum = sum + r;
        n = n / 10;
    }
 
    return sum;
}
 
// Function to check Junction numbers
bool isJunction(int n)
{
    // To store count of ways n can be
    // represented as i + SOD(i)
    int count = 0;
    for (int i = 1; i <= n; i++) {
        if (i + sum(i) == n)
            count++;
    }
 
    return count >= 2;
}
 
// Driver Code
int main()
{
    int N = 111;
 
    // Function Call
    if (isJunction(N))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java program for above approach
class GFG{
 
// Function to find the
// sum Of digits of N
static int sum(int n)
{
 
    // To store sum of N and
    // sumOfdigitsof(N)
    int sum = 0;
 
    while (n != 0)
    {
        // extracting digit
        int r = n % 10;
        sum = sum + r;
        n = n / 10;
    }
    return sum;
}
 
// Function to check Junction numbers
static boolean isJunction(int n)
{
    // To store count of ways n can be
    // represented as i + SOD(i)
    int count = 0;
    for (int i = 1; i <= n; i++)
    {
        if (i + sum(i) == n)
            count++;
    }
    return count >= 2;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 111;
 
    // Function Call
    if (isJunction(N))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by Pratima Pandey


Python3




# Python3 program for the above approach
import math
 
# Function to find the
# sum Of digits of N
def sum1(n):
 
    # To store sum of N and
    # sumOfdigitsof(N)
    sum1 = 0
 
    while (n != 0):
         
        # extracting digit
        r = n % 10
        sum1 = sum1 + r
        n = n // 10
     
    return sum1
 
# Function to check Junction numbers
def isJunction(n):
 
    # To store count of ways n can be
    # represented as i + SOD(i)
    count = 0
    for i in range(1, n + 1):
        if (i + sum1(i) == n):
            count = count + 1
 
    return count >= 2
 
# Driver Code
if __name__=='__main__':
 
    # Given Number
    n = 111
 
    # Function Call
    if (isJunction(n) == 1):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by rock_cool


C#




// C# program for above approach
using System;
class GFG{
 
// Function to find the
// sum Of digits of N
static int sum(int n)
{
 
    // To store sum of N and
    // sumOfdigitsof(N)
    int sum = 0;
 
    while (n != 0)
    {
        // extracting digit
        int r = n % 10;
        sum = sum + r;
        n = n / 10;
    }
    return sum;
}
 
// Function to check Junction numbers
static bool isJunction(int n)
{
    // To store count of ways n can be
    // represented as i + SOD(i)
    int count = 0;
    for (int i = 1; i <= n; i++)
    {
        if (i + sum(i) == n)
            count++;
    }
    return count >= 2;
}
 
// Driver Code
public static void Main()
{
    int N = 111;
 
    // Function Call
    if (isJunction(N))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by Nidhi Biet


Javascript




<script>
 
// Javascript program for above approach
 
 
    // Function to find the
    // sum Of digits of N
    function sum( n) {
 
        // To store sum of N and
        // sumOfdigitsof(N)
        let sum = 0;
 
        while (n != 0) {
            // extracting digit
            let r = n % 10;
            sum = sum + r;
            n = parseInt(n / 10);
        }
        return sum;
    }
 
    // Function to check Junction numbers
    function isJunction( n) {
        // To store count of ways n can be
        // represented as i + SOD(i)
        let count = 0;
        for ( i = 1; i <= n; i++) {
            if (i + sum(i) == n)
                count++;
        }
        return count >= 2;
    }
 
    // Driver Code
      
        let N = 111;
 
        // Function Call
        if (isJunction(N))
            document.write("Yes");
        else
            document.write("No");
 
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

Yes

 

Time Complexity: O(n) 

Space Complexity: O(1)
Reference: http://www.numbersaplenty.com/set/junction_number/
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments