Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AICount pairs of elements such that number of set bits in their...

Count pairs of elements such that number of set bits in their AND is B[i]

Given two arrays A[] and B[] of N elements each. The task is to find the number of index pairs (i, j) such that i ? j and F(A[i] & A[j]) = B[j] where F(X) is the count of set bits in the binary representation of X.
Examples: 
 

Input: A[] = {2, 3, 1, 4, 5}, B[] = {2, 2, 1, 4, 2} 
Output:
All possible pairs are (3, 3), (3, 1), (1, 1) and (5, 5)
Input: A[] = {1, 2, 3, 4, 5}, B[] = {2, 2, 2, 2, 2} 
Output:
 

 

Approach: Iterate through all the possible pairs (i, j) and check the count of set bits in their AND value. If the count is equal to B[j] then increment the count.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of pairs
// which satisfy the given condition
int solve(int A[], int B[], int n)
{
    int cnt = 0;
 
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++)
 
            // Check if the count of set bits
            // in the AND value is B[j]
            if (__builtin_popcount(A[i] & A[j]) == B[j]) {
                cnt++;
            }
 
    return cnt;
}
 
// Driver code
int main()
{
    int A[] = { 2, 3, 1, 4, 5 };
    int B[] = { 2, 2, 1, 4, 2 };
    int size = sizeof(A) / sizeof(A[0]);
 
    cout << solve(A, B, size);
 
    return 0;
}


Java




// Java implementation of the approach
public class GFG
{
 
    // Function to return the count of pairs
    // which satisfy the given condition
    static int solve(int A[], int B[], int n)
    {
        int cnt = 0;
 
        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++) // Check if the count of set bits
            // in the AND value is B[j]
            {
                if (Integer.bitCount(A[i] & A[j]) == B[j])
                {
                    cnt++;
                }
            }
        }
 
        return cnt;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int A[] = {2, 3, 1, 4, 5};
        int B[] = {2, 2, 1, 4, 2};
        int size = A.length;
 
        System.out.println(solve(A, B, size));
    }
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python3 implementation of the approach
 
# Function to return the count of pairs
# which satisfy the given condition
def solve(A, B, n) :
    cnt = 0;
 
    for i in range(n) :
        for j in range(i, n) :
 
            # Check if the count of set bits
            # in the AND value is B[j]
            c = A[i] & A[j]
            if (bin(c).count('1') == B[j]) :
                cnt += 1;
    return cnt;
 
# Driver code
if __name__ == "__main__" :
 
    A = [ 2, 3, 1, 4, 5 ];
    B = [ 2, 2, 1, 4, 2 ];
     
    size = len(A);
 
    print(solve(A, B, size));
 
# This code is contributed
# by AnkitRai01


C#




// C# Implementation of the above approach
using System;
 
class GFG
{
 
    // Function to return the count of pairs
    // which satisfy the given condition
    static int solve(int []A, int []B, int n)
    {
        int cnt = 0;
 
        for (int i = 0; i < n; i++)
        {
            for (int j = i; j < n; j++)
            // Check if the count of set bits
            // in the AND value is B[j]
            {
                if (countSetBits(A[i] & A[j]) == B[j])
                {
                    cnt++;
                }
            }
        }
 
        return cnt;
    }
     
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        int []A = {2, 3, 1, 4, 5};
        int []B = {2, 2, 1, 4, 2};
        int size = A.Length;
 
        Console.WriteLine(solve(A, B, size));
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript Implementation of the above approach
 
// Function to return the count of pairs
// which satisfy the given condition
function solve(A, B, n)
{
    var cnt = 0;
    for (var i = 0; i < n; i++)
    {
        for (var j = i; j < n; j++)
         
        // Check if the count of set bits
        // in the AND value is B[j]
        {
            if (countSetBits(A[i] & A[j]) == B[j])
            {
                cnt++;
            }
        }
    }
    return cnt;
}
 
// Function to get no of set
// bits in binary representation
// of positive integer n
function countSetBits(n)
{
    var count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
// Driver code
var A = [2, 3, 1, 4, 5];
var B = [2, 2, 1, 4, 2];
var size = A.length;
document.write(solve(A, B, size));
 
// This code is contributed by rutvik_56.
</script>


Output: 

4

 

Time Complexity: O(n2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments