Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AIKth number exceeding N whose sum of its digits divisible by M

Kth number exceeding N whose sum of its digits divisible by M

Given the integers N, K and M, the task is to find the Kth number greater than N whose sum of digits is divisible by M.

Examples:

Input: N = 6, K = 5, M = 5
Output: 32
Explanation:
The number greater than N = 6 with the sum of their digits divisible by 5 are {14, 19, 23, 28, 32, …}. The Kth number i.e., the 5th number is 32.

Input: N = 40, K = 4,  M = 5 
Output: 55
Explanation:
The number greater than N = 40 with the sum of their digits divisible by 5 are {41, 46, 50, 55, …}. The Kth number i.e., the 4th number is 55.

Naive Approach: The simplest approach is to check every number greater than N and if the sum of its digits is divisible by M, increment the counter by 1. Keep checking the number until the counter becomes equal to K

Time Complexity: O(K)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use Dynamic Programming and Binary Search. Follow the below steps to solve the problem:

  • First, create a recursive memorized function to find the total number of integers smaller than or equal to S having the sum of digits divisible by M as shown below:

 The dp transitions will be:

dp(S, index, sum, tight, M) = dp(index+1, (sum+i)%M, tight, M) where,

  • S is given limit for which all numbers smaller than or equal to S with the sum of digits divisible by M needs to be found.
  • index is the current index for which a digit needs to be placed.
  • sum takes the values from 0 to 4.
  • Base condition is, if index becomes greater than the length of S and sum is divisible by M, return 1.
  • M is the divisor.

If the previous digit already placed such that it becomes smaller than S then 

  • tight will become equal to 0.
  • i will iterate from 0 to 9.

If all the previous digits match with the corresponding digits in S, then

  • tight will become 1, which denotes that the number is still not become smaller than S.
  • i will iterate from 0 to digit S[index].
  • Now using Binary Search, where the lower limit will be N+1 and the upper limit will be some large integer.
  • Initialize a variable left for storing the total numbers smaller than or equal to N whose sum of digits is divisible by M.
  • Find the midpoint of the lower and the upper limit and then find the numbers smaller than or equal midpoint whose sum of digits is divisible by M using the above dp function. Let it be right.
  • If left + K is equals to right then, update the answer as mid and set the upper limit as midpoint – 1.
  • Otherwise, if left + K is smaller than right, set the upper limit as midpoint-1.
  • If left + K is greater than right, set the lower limit as midpoint+1.
  • Repeat the above steps, while the lower limit is smaller than or equal to the upper limit.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Initialize dp array
int dp[100000][100][2];
 
// Function to find the numbers <= S
// having digits sum divisible by M
int solve(string s, int index, int sum,
                    int tight, int z)
{
     
    // Base Case
    if (index >= s.size())
    {
        if (sum % z == 0)
            return 1;
             
        return 0;
    }
 
    // Visited state
    if (dp[index][sum][tight] != -1)
        return dp[index][sum][tight];
 
    // Store answer
    int ans = 0;
 
    // If number still does not
    // become smaller than S
    if (tight == 1)
    {
         
        // Find limit
        int l = s[index] - '0';
 
        // Iterate through all
        // the digits
        for(int i = 0; i <= l; i++)
        {
             
            // If current digit is limit
            if (i == l)
            {
                ans += solve(s, index + 1,
                                 (sum + i) % z, 1, z);
            }
 
            // Number becomes smaller than S
            else {
                ans += solve(s, index + 1,
                                 (sum + i) % z, 0, z);
            }
        }
    }
    else
    {
         
        // If number already becomes
        // smaller than S
        for(int i = 0; i <= 9; i++)
            ans += solve(s, index + 1,
                             (sum + i) % z, 0, z);
    }
 
    // Return and store the answer
    // for the current state
    return dp[index][sum][tight] = ans;
}
 
// Function to find the Kth number
// > N whose sum of the digits is
// divisible by M
int search(int n, int k, int z)
{
     
    // Initialize lower limit
    int low = n + 1;
 
    // Initialize upper limit
    int high = 1e9;
 
    // Mask dp states unvisited
    memset(dp, -1, sizeof(dp));
 
    // Numbers <= N except 0 with
    // digits sum divisible by M
    int left = solve(to_string(n),
                     0, 0, 1, z) - 1;
 
    // Initialize answer with -1
    int ans = -1;
    while (low <= high)
    {
         
        // Calculate mid
        int mid = low + (high - low) / 2;
 
        // Mark dp states unvisited
        memset(dp, -1, sizeof(dp));
 
        // Numbers < mid with digits
        // sum divisible by M
        int right = solve(to_string(mid),
                          0, 0, 1, z) - 1;
 
        // If the current mid is
        // satisfy the condition
        if (left + k == right)
        {
             
            // Might be the answer
            ans = mid;
 
            // Update upper limit
            high = mid - 1;
        }
        else if (left + k < right)
        {
             
            // Update upper limit
            high = mid - 1;
        }
        else
        {
             
            // Update lower limit
            low = mid + 1;
        }
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
int main()
{
     
    // Given N, K, and M
    int N = 40;
    int K = 4;
    int M = 2;
     
    // Function Call
    cout << search(N, K, M) << endl;
}
 
// This code is contributed by bolliranadheer


Java




// Java program for the above approach
 
import java.util.*;
public class Main {
 
    static int dp[][][];
 
    // Function to find the Kth number
    // > N whose sum of the digits is
    // divisible by M
    public static int search(
        int n, int k, int z)
    {
 
        // Initialize dp array
        dp = new int[100000 + 1][z][2];
 
        // Initialize lower limit
        int low = n + 1;
 
        // Initialize upper limit
        int high = Integer.MAX_VALUE / 2;
 
        // Mask dp states unvisited
        clear();
 
        // Numbers <= N except 0 with
        // digits sum divisible by M
        int left = solve(n + "", 0,
                         0, 1, z)
                   - 1;
 
        // Initialize answer with -1
        int ans = -1;
        while (low <= high) {
 
            // Calculate mid
            int mid = low + (high - low) / 2;
 
            // Mark dp states unvisited
            clear();
 
            // Numbers < mid with digits
            // sum divisible by M
            int right = solve(mid + "", 0,
                              0, 1, z)
                        - 1;
 
            // If the current mid is
            // satisfy the condition
            if (left + k == right) {
 
                // Might be the answer
                ans = mid;
 
                // Update upper limit
                high = mid - 1;
            }
            else if (left + k < right) {
 
                // Update upper limit
                high = mid - 1;
            }
            else {
 
                // Update lower limit
                low = mid + 1;
            }
        }
 
        // Return the answer
        return ans;
    }
 
    // Function to find the numbers <= S
    // having digits sum divisible by M
    public static int solve(
        String s, int index, int sum,
        int tight, int z)
    {
        // Base Case
        if (index >= s.length()) {
            if (sum % z == 0)
                return 1;
            return 0;
        }
 
        // Visited state
        if (dp[index][sum][tight] != -1)
            return dp[index][sum][tight];
 
        // Store answer
        int ans = 0;
 
        // If number still does not
        // become smaller than S
        if (tight == 1) {
 
            // Find limit
            int l = s.charAt(index) - '0';
 
            // Iterate through all
            // the digits
            for (int i = 0; i <= l; i++) {
 
                // If current digit is limit
                if (i == l) {
                    ans += solve(s, index + 1,
                                 (sum + i) % z,
                                 1, z);
                }
 
                // Number becomes smaller than S
                else {
                    ans += solve(s, index + 1,
                                 (sum + i) % z,
                                 0, z);
                }
            }
        }
        else {
 
            // If number already becomes
            // smaller than S
            for (int i = 0; i <= 9; i++)
                ans += solve(s, index + 1,
                             (sum + i) % z, 0,
                             z);
        }
 
        // Return and store the answer
        // for the current state
        return dp[index][sum][tight] = ans;
    }
 
    // Function to clear the states
    public static void clear()
    {
        for (int i[][] : dp) {
            for (int j[] : i)
                Arrays.fill(j, -1);
        }
    }
 
    // Driver Code
    public static void main(String args[])
    {
        // Given N, K, and M
        int N = 40;
        int K = 4;
        int M = 2;
 
        // Function Call
        System.out.println(search(N, K, M));
    }
}


Python3




# Python program for the
# above approach
 
# Initialize dp array
dp = [[[]]]
 
# Function to find the
# numbers <= S having
# digits sum divisible
# by M
def solve(s, index,
          sum,tight, z):
 
    # Base Case
    if (index >= len(s)):   
        if (sum % z == 0):
            return 1
 
        return 0
 
    # Visited state
    if (dp[index][sum][tight] != -1):
        return dp[index][sum][tight]
 
    # Store answer
    ans = 0
 
    # If number still does not
    # become smaller than S
    if(tight == 1):
 
        # Find limit
        l = int(ord(s[index]) -
                ord('0'))
 
        # Iterate through all
        # the digits
        for i in range(0, l + 1):
             
            # If current digit is
            # limit
            if (i == l):
             
                ans += solve(s, index + 1,
                            (sum + i) % z,
                             1, z)
             
            # Number becomes smaller
            # than S
            else:
                ans += solve(s, index + 1,
                            (sum + i) % z,
                             0, z)
 
    else:
     
        # If number already becomes
        # smaller than S
        for i in range(0,10):
         
            ans += solve(s, index + 1,
                        (sum + i) % z,
                         0, z)
     
    # Return and store the answer
    # for the current state
    dp[index][sum][tight] = ans
    return ans
 
# Function to find the Kth number
# > N whose sum of the digits is
# divisible by M
def search(n, k, z):
 
    global dp
    dp = [[[-1, -1] for j in range(z)]
                    for i in range(100001)]
 
    # Initialize lower limit
    low = n + 1
 
    # Initialize upper limit
    high = 1000000009
 
    # Numbers <= N except 0 with
    # digits sum divisible by M
    left = solve(str(n), 0,
                 0, 1, z) - 1
 
    # Initialize answer with -1
    ans = -1
    while (low <= high):
 
        # Calculate mid
        mid = low + (high -
                     low) // 2
 
        # Mark dp states unvisited
        dp = [[[-1, -1] for j in range(z)]
                        for i in range(100000)]
 
        # Numbers < mid with digits
        # sum divisible by M
        right = solve(str(mid), 0,
                      0, 1, z) - 1
 
        # If the current mid is
        # satisfy the condition
        if (left + k == right):
 
            # Might be the answer
            ans = mid
 
            # Update upper limit
            high = mid - 1
         
        elif (left + k < right):
         
            # Update upper limit
            high = mid - 1
         
        else:
 
            # Update lower limit
            low = mid + 1
 
    # Return the answer
    return ans
 
# Driver Code
if __name__ == "__main__":
     
    # Given N, K, and M
    N = 40
    K = 4
    M = 2
 
    # Function Call
    print(search(N, K, M))
 
# This code is contributed by Rutvik_56


C#




// C# program for the above approach
using System;
 
class GFG{
 
static int [,,]dp;
 
// Function to find the Kth number
// > N whose sum of the digits is
// divisible by M
public static int search(int n, int k,
                         int z)
{
     
    // Initialize dp array
    dp = new int[100000 + 1, z, 2];
 
    // Initialize lower limit
    int low = n + 1;
 
    // Initialize upper limit
    int high = int.MaxValue / 2;
 
    // Mask dp states unvisited
    Clear(z);
 
    // Numbers <= N except 0 with
    // digits sum divisible by M
    int left = solve(n + "", 0,
                     0, 1, z) - 1;
 
    // Initialize answer with -1
    int ans = -1;
    while (low <= high)
    {
         
        // Calculate mid
        int mid = low + (high - low) / 2;
         
        // Mark dp states unvisited
        Clear(z);
         
        // Numbers < mid with digits
        // sum divisible by M
        int right = solve(mid + "", 0,
                          0, 1, z) - 1;
 
        // If the current mid is
        // satisfy the condition
        if (left + k == right)
        {
             
            // Might be the answer
            ans = mid;
 
            // Update upper limit
            high = mid - 1;
        }
        else if (left + k < right)
        {
             
            // Update upper limit
            high = mid - 1;
        }
        else
        {
             
            // Update lower limit
            low = mid + 1;
        }
    }
     
    // Return the answer
    return ans;
}
 
// Function to find the numbers <= S
// having digits sum divisible by M
public static int solve(String s, int index,
                        int sum, int tight,
                        int z)
{
     
    // Base Case
    if (index >= s.Length)
    {
        if (sum % z == 0)
            return 1;
             
        return 0;
    }
 
    // Visited state
    if (dp[index, sum, tight] != -1)
        return dp[index, sum, tight];
 
    // Store answer
    int ans = 0;
 
    // If number still does not
    // become smaller than S
    if (tight == 1)
    {
         
        // Find limit
        int l = s[index] - '0';
 
        // Iterate through all
        // the digits
        for(int i = 0; i <= l; i++)
        {
             
            // If current digit is limit
            if (i == l)
            {
                ans += solve(s, index + 1,
                            (sum + i) % z,
                             1, z);
            }
             
            // Number becomes smaller than S
            else
            {
                ans += solve(s, index + 1,
                            (sum + i) % z,
                             0, z);
            }
        }
    }
    else
    {
         
        // If number already becomes
        // smaller than S
        for(int i = 0; i <= 9; i++)
            ans += solve(s, index + 1,
                        (sum + i) % z, 0,
                         z);
    }
     
    // Return and store the answer
    // for the current state
    return dp[index, sum, tight] = ans;
}
 
// Function to clear the states
public static void Clear(int z)
{
    for(int i = 0; i < 100001; i++)
    {
        for(int j = 0; j < z; j++)
        {
            for(int l = 0; l < 2; l++)
                dp[i, j, l] = -1;
        }
    }
}
 
// Driver Code
public static void Main(String []args)
{
     
    // Given N, K, and M
    int N = 40;
    int K = 4;
    int M = 2;
     
    // Function Call
    Console.WriteLine(search(N, K, M));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program for the above approach
 
let dp;
 
// Function to find the Kth number
    // > N whose sum of the digits is
    // divisible by M
function search(n,k,z)
{
    // Initialize dp array
        dp = new Array(100000 + 1);
        for(let i=0;i<100000+1;i++)
        {
            dp[i]=new Array(z);
            for(let j=0;j<z;j++)
            {
                dp[i][j]=new Array(2);
            }
        }
  
        // Initialize lower limit
        let low = n + 1;
  
        // Initialize upper limit
        let high = Math.floor(Number.MAX_VALUE / 2);
  
        // Mask dp states unvisited
        clear();
  
        // Numbers <= N except 0 with
        // digits sum divisible by M
        let left = solve(n + "", 0,
                         0, 1, z)
                   - 1;
  
        // Initialize answer with -1
        let ans = -1;
        while (low <= high) {
  
            // Calculate mid
            let mid = low + Math.floor((high - low) / 2);
  
            // Mark dp states unvisited
            clear();
  
            // Numbers < mid with digits
            // sum divisible by M
            let right = solve(mid + "", 0,
                              0, 1, z)
                        - 1;
  
            // If the current mid is
            // satisfy the condition
            if (left + k == right) {
  
                // Might be the answer
                ans = mid;
  
                // Update upper limit
                high = mid - 1;
            }
            else if (left + k < right) {
  
                // Update upper limit
                high = mid - 1;
            }
            else {
  
                // Update lower limit
                low = mid + 1;
            }
        }
  
        // Return the answer
        return ans;
}
 
// Function to find the numbers <= S
    // having digits sum divisible by M
function solve(s,index,sum,tight,z)
{
    // Base Case
        if (index >= s.length) {
            if (sum % z == 0)
                return 1;
            return 0;
        }
  
        // Visited state
        if (dp[index][sum][tight] != -1)
            return dp[index][sum][tight];
  
        // Store answer
        let ans = 0;
  
        // If number still does not
        // become smaller than S
        if (tight == 1) {
  
            // Find limit
            let l = s[index].charCodeAt(0) - '0'.charCodeAt(0);
  
            // Iterate through all
            // the digits
            for (let i = 0; i <= l; i++) {
  
                // If current digit is limit
                if (i == l) {
                    ans += solve(s, index + 1,
                                 (sum + i) % z,
                                 1, z);
                }
  
                // Number becomes smaller than S
                else {
                    ans += solve(s, index + 1,
                                 (sum + i) % z,
                                 0, z);
                }
            }
        }
        else {
  
            // If number already becomes
            // smaller than S
            for (let i = 0; i <= 9; i++)
                ans += solve(s, index + 1,
                             (sum + i) % z, 0,
                             z);
        }
  
        // Return and store the answer
        // for the current state
        return dp[index][sum][tight] = ans;
}
 
// Function to clear the states
function clear()
{
    for(let i=0;i<dp.length;i++)
    {
        for(let j=0;j<dp[i].length;j++)
        {
            for(let k=0;k<dp[i][j].length;k++)
            {
                dp[i][j][k]=-1;
            }
        }
    }
}
 
// Driver Code
// Given N, K, and M
let N = 40;
let K = 4;
let M = 2;
 
// Function Call
document.write(search(N, K, M)+"<br>");
 
// This code is contributed by patel2127
</script>


Output

48

Time Complexity: O(log(INT_MAX))
Auxiliary Space: O(K * M * log(INT_MAX))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments