Given an array arr[] of length N, the task is to remove the minimum number of elements from the array to make it a mountain array and then print it.
Note: A mountain array is an array where there is an index i such that arr[0] < arr[1] < . . .< arr[i-1] < arr[i] > arr[i+1] > . . . > arr[N-1]. Also a mountain array must have a length greater than or equal to 3 to satisfy the above condition.
Examples:
Input: arr[] = {9, 8, 1, 7, 6, 5, 4, 3, 2, 1}
Output: 1 7 6 5 4 3 2 1
Explanation: Remove the elements 9, 8. The resultant array is the mountain array.
It is the minimum number of removals possible.Input: arr[] = {1, 1, 1};
Output: -1
Explanation: This array cannot be transformed into a mountain array
Approach: Follow the steps below to solve this problem:
- Create two arrays left and right.
- For every index i, left[i] will store the longest increasing subsequence that ends at i and right[i] will store the longest decreasing subsequence that starts from i.
- Now, find the maximum length of mountain subsequence assuming each index as the peak of the mountain.
Length of mountain subsequence having peak at i = left[i]+right[i]-1
- Find the maximum length of mountain subsequence, say max and keep track of the peak for which the maximum length is achieved.
- So, the minimum number of deletions is (N – max).
- Now print the longest increasing subsequence from starting to i and the longest decreasing subsequence from i to end of the array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to print the mountain array // after minimum removals void mountArray(vector< int >& arr) { int N = arr.size(); vector< int > left(N, 1), right(N, 1); for ( int i = 0; i < N; ++i) { for ( int j = 0; j <= i; ++j) { if (arr[j] < arr[i]) { // This means the // previous number is // smaller than the number left[i] = max(left[j] + 1, left[i]); } } } // Find the longest decreasing sequence for ( int i = N - 1; i >= 0; --i) { for ( int j = i; j <= N - 1; ++j) { if (arr[j] < arr[i]) { right[i] = max(right[j] + 1, right[i]); } } } int max = 0; int index = 0; for ( int i = 1; i < N - 1; ++i) { if (left[i] != 1 && right[i] != 1) { if (max < (left[i] + right[i]) - 1) { index = i; max = (left[i] + right[i]) - 1; } } } // Print the longest continuous // subsequence from 0 to ith // and ith to N index vector< int > left1; left1.push_back(arr[index]); for ( int i = index; i >= 0; --i) { if (arr[i] < arr[index]) { // There is possibility // either the index is // used or not if (left[i] + 1 == left[index]) { left1.push_back(arr[i]); left[index] -= 1; } } } vector< int > right1; // Starting the right for ( int i = index; i < right.size(); ++i) { if (arr[index] > arr[i]) { if (right[i] + 1 == right[index]) { right1.push_back(arr[i]); right[index] -= 1; } } } if (max < 3) { cout << (-1) << "\n" ; } else { // Print the first left1 array // then the right array for ( int i = left1.size() - 1; i >= 0; --i) { cout << left1[i] << " " ; } for ( int i = 0; i < right1.size(); ++i) { cout << right1[i] << " " ; } } } // Driver code int main() { vector< int > arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 }; mountArray(arr); } // This code is contributed by Taranpreet |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { // Function to print the mountain array // after minimum removals public static void mountArray( int arr[]) { int N = arr.length; int left[] = new int [N]; int right[] = new int [N]; Arrays.fill(left, 1 ); Arrays.fill(right, 1 ); for ( int i = 0 ; i < N; ++i) { for ( int j = 0 ; j <= i; ++j) { if (arr[j] < arr[i]) { // This means the // previous number is // smaller than the number left[i] = Math.max(left[j] + 1 , left[i]); } } } // Find the longest decreasing sequence for ( int i = N - 1 ; i >= 0 ; --i) { for ( int j = i; j <= N - 1 ; ++j) { if (arr[j] < arr[i]) { right[i] = Math.max(right[j] + 1 , right[i]); } } } int max = 0 ; int index = 0 ; for ( int i = 1 ; i < N - 1 ; ++i) { if (left[i] != 1 && right[i] != 1 ) { if (max < (left[i] + right[i]) - 1 ) { index = i; max = (left[i] + right[i]) - 1 ; } } } // Print the longest continuous // subsequence from 0 to ith // and ith to N index ArrayList<Integer> left1 = new ArrayList<Integer>(); left1.add(arr[index]); for ( int i = index; i >= 0 ; --i) { if (arr[i] < arr[index]) { // There is possibility // either the index is // used or not if (left[i] + 1 == left[index]) { left1.add(arr[i]); left[index] -= 1 ; } } } ArrayList<Integer> right1 = new ArrayList<>(); // Starting the right for ( int i = index; i < right.length; ++i) { if (arr[index] > arr[i]) { if (right[i] + 1 == right[index]) { right1.add(arr[i]); right[index] -= 1 ; } } } if (max < 3 ) { System.out.println(- 1 ); } else { // Print the first left1 array // then the right array for ( int i = left1.size() - 1 ; i >= 0 ; --i) { System.out.print(left1.get(i) + " " ); } for ( int i = 0 ; i < right1.size(); ++i) { System.out.print(right1.get(i) + " " ); } } } // Driver code public static void main(String[] args) { int arr[] = { 9 , 8 , 1 , 7 , 6 , 5 , 4 , 3 , 2 , 1 }; mountArray(arr); } } |
Python3
# python3 program for the above approach # Function to print the mountain array # after minimum removals def mountArray(arr): N = len (arr) left, right = [ 1 for _ in range (N)], [ 1 for _ in range (N)] for i in range ( 0 , N): for j in range ( 0 , i + 1 ): if (arr[j] < arr[i]): # This means the # previous number is # smaller than the number left[i] = max (left[j] + 1 , left[i]) # Find the longest decreasing sequence for i in range (N - 1 , - 1 , - 1 ): for j in range (i, N): if (arr[j] < arr[i]): right[i] = max (right[j] + 1 , right[i]) maxi = 0 index = 0 for i in range ( 1 , N - 1 ): if (left[i] ! = 1 and right[i] ! = 1 ): if (maxi < (left[i] + right[i]) - 1 ): index = i maxi = (left[i] + right[i]) - 1 # Print the longest continuous # subsequence from 0 to ith # and ith to N index left1 = [] left1.append(arr[index]) for i in range (index, - 1 , - 1 ): if (arr[i] < arr[index]): # There is possibility # either the index is # used or not if (left[i] + 1 = = left[index]): left1.append(arr[i]) left[index] - = 1 right1 = [] # Starting the right for i in range (index, len (right)): if (arr[index] > arr[i]): if (right[i] + 1 = = right[index]): right1.append(arr[i]) right[index] - = 1 if (maxi < 3 ): print ( "-1" ) else : # Print the first left1 array # then the right array for i in range ( len (left1) - 1 , - 1 , - 1 ): print (left1[i], end = " " ) for i in range ( 0 , len (right1)): print (right1[i], end = " " ) # Driver code if __name__ = = "__main__" : arr = [ 9 , 8 , 1 , 7 , 6 , 5 , 4 , 3 , 2 , 1 ] mountArray(arr) # This code is contributed by rakeshsahni |
C#
// C# program for the above approach using System; using System.Collections; class GFG { // Function to print the mountain array // after minimum removals static void mountArray( int []arr) { int N = arr.Length; int []left = new int [N]; int []right = new int [N]; for ( int i = 0; i < N; i++) { left[i] = 1; right[i] = 1; } for ( int i = 0; i < N; ++i) { for ( int j = 0; j <= i; ++j) { if (arr[j] < arr[i]) { // This means the // previous number is // smaller than the number left[i] = Math.Max(left[j] + 1, left[i]); } } } // Find the longest decreasing sequence for ( int i = N - 1; i >= 0; --i) { for ( int j = i; j <= N - 1; ++j) { if (arr[j] < arr[i]) { right[i] = Math.Max(right[j] + 1, right[i]); } } } int max = 0; int index = 0; for ( int i = 1; i < N - 1; ++i) { if (left[i] != 1 && right[i] != 1) { if (max < (left[i] + right[i]) - 1) { index = i; max = (left[i] + right[i]) - 1; } } } // Print the longest continuous // subsequence from 0 to ith // and ith to N index ArrayList left1 = new ArrayList(); left1.Add(arr[index]); for ( int i = index; i >= 0; --i) { if (arr[i] < arr[index]) { // There is possibility // either the index is // used or not if (left[i] + 1 == left[index]) { left1.Add(arr[i]); left[index] -= 1; } } } ArrayList right1 = new ArrayList(); // Starting the right for ( int i = index; i < right.Length; ++i) { if (arr[index] > arr[i]) { if (right[i] + 1 == right[index]) { right1.Add(arr[i]); right[index] -= 1; } } } if (max < 3) { Console.Write(-1); } else { // Print the first left1 array // then the right array for ( int i = left1.Count - 1; i >= 0; --i) { Console.Write(left1[i] + " " ); } for ( int i = 0; i < right1.Count; ++i) { Console.Write(right1[i] + " " ); } } } // Driver code public static void Main() { int []arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 }; mountArray(arr); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code for the above approach // Function to print the mountain array // after minimum removals function mountArray(arr) { let N = arr.length; let left = new Array(N).fill(1); let right = new Array(N).fill(1); for (let i = 0; i < N; ++i) { for (let j = 0; j <= i; ++j) { if (arr[j] < arr[i]) { // This means the // previous number is // smaller than the number left[i] = Math.max(left[j] + 1, left[i]); } } } // Find the longest decreasing sequence for (let i = N - 1; i >= 0; --i) { for (let j = i; j <= N - 1; ++j) { if (arr[j] < arr[i]) { right[i] = Math.max(right[j] + 1, right[i]); } } } let max = 0; let index = 0; for (let i = 1; i < N - 1; ++i) { if (left[i] != 1 && right[i] != 1) { if (max < (left[i] + right[i]) - 1) { index = i; max = (left[i] + right[i]) - 1; } } } // Print the longest continuous // subsequence from 0 to ith // and ith to N index let left1 = []; left1.push(arr[index]); for (let i = index; i >= 0; --i) { if (arr[i] < arr[index]) { // There is possibility // either the index is // used or not if (left[i] + 1 == left[index]) { left1.push(arr[i]); left[index] -= 1; } } } let right1 = [] // Starting the right for (let i = index; i < right.length; ++i) { if (arr[index] > arr[i]) { if (right[i] + 1 == right[index]) { right1.push(arr[i]); right[index] -= 1; } } } if (max < 3) { document.write(-1); } else { // Print the first left1 array // then the right array for (let i = left1.length - 1; i >= 0; --i) { document.write(left1[i] + " " ); } for (let i = 0; i < right1.length; ++i) { document.write(right1[i] + " " ); } } } // Driver code let arr = [9, 8, 1, 7, 6, 5, 4, 3, 2, 1]; mountArray(arr); // This code is contributed by Potta Lokesh </script> |
1 7 6 5 4 3 2 1
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!