Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIFind the Initial Array from given array after range sum queries

Find the Initial Array from given array after range sum queries

Given an array arr[] which is the resultant array when a number of queries are performed on the original array. The queries are of the form [l, r, x] where l is the starting index in the array, r is the ending index in the array and x is the integer elements that have to be added to all the elements in the index range [l, r]. The task is to find the original array.

Examples:  

Input: arr[] = {5, 7, 8}, l[] = {0}, r[] = {1}, x[] = {2} 
Output: 3 5 8 
If query [0, 1, 2] is performed on the array {3, 5, 8} 
The resultant array will be {5, 7, 8}

Input: arr[] = {20, 30, 20, 70, 100}, 
l[] = {0, 1, 3}, 
r[] = {2, 4, 4}, 
x[] = {10, 20, 30} 
Output: 10 0 -10 20 50 

Naive Approach: For each range starting from l to r subtract the corresponding x to get the initial array.

Algorithm

1)Define the initial array arr and its size n.
2)Define the ranges l, r, and the values x for decrementing the elements in those ranges.
3)Define the number of queries q.
4)For each query j from 0 to q-1:
    For each index i from l[j] to r[j], decrement the corresponding element in the array arr by the value x[j].
5)Print the elements of the final array arr.

Below is the implementation of the approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to print the contents of an array
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
}
 
// Function to find the original array
void findOrgArr(int arr[], int l[], int r[], int x[],
                int n, int q)
{
    for (int j = 0; j < q; j++) {
        for (int i = l[j]; i <= r[j]; i++) {
 
            // Decrement elements between
            // l[j] and r[j] by x[j]
            arr[i] = arr[i] - x[j];
        }
    }
 
    printArr(arr, n);
}
 
// Driver code
int main()
{
    // Final array
    int arr[] = { 20, 30, 20, 70, 100 };
 
    // Size of the array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Queries
    int l[] = { 0, 1, 3 };
    int r[] = { 2, 4, 4 };
    int x[] = { 10, 20, 30 };
 
    // Number of queries
    int q = sizeof(l) / sizeof(l[0]);
 
    findOrgArr(arr, l, r, x, n, q);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Utility function to print the contents of an array
static void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        System.out.print(arr[i]+" ");
    }
}
 
// Function to find the original array
static void findOrgArr(int arr[], int l[], int r[], int x[],
                int n, int q)
{
    for (int j = 0; j < q; j++) {
        for (int i = l[j]; i <= r[j]; i++) {
 
            // Decrement elements between
            // l[j] and r[j] by x[j]
            arr[i] = arr[i] - x[j];
        }
    }
 
    printArr(arr, n);
}
 
// Driver code
public static void  main(String args[])
{
    // Final array
    int arr[] = { 20, 30, 20, 70, 100 };
 
    // Size of the array
    int n =  arr.length;
 
    // Queries
    int l[] = { 0, 1, 3 };
    int r[] = { 2, 4, 4 };
    int x[] = { 10, 20, 30 };
 
    // Number of queries
    int q = l.length;
 
    findOrgArr(arr, l, r, x, n, q);
 
}
}
 
// This code is contributed by
// Shashank_Sharma


Python3




# Python3 implementation of the approach
import math as mt
 
# Utility function to print the
# contents of an array
def printArr(arr, n):
 
    for i in range(n):
        print(arr[i], end = " ")
 
# Function to find the original array
def findOrgArr(arr, l, r, x, n, q):
 
    for j in range(q):
        for i in range(l[j], r[j] + 1):
             
            # Decrement elements between
            # l[j] and r[j] by x[j]
            arr[i] = arr[i] - x[j]
         
    printArr(arr, n)
 
# Driver code
 
# Final array
arr = [20, 30, 20, 70, 100]
 
# Size of the array
n = len(arr)
 
# Queries
l = [0, 1, 3]
r = [ 2, 4, 4]
x = [ 10, 20, 30 ]
 
# Number of queries
q = len(l)
 
findOrgArr(arr, l, r, x, n, q)
 
# This code is contributed by
# mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Utility function to print the
// contents of an array
static void printArr(int[] arr, int n)
{
    for (int i = 0; i < n; i++)
    {
        Console.Write(arr[i] + " ");
    }
}
 
// Function to find the original array
static void findOrgArr(int[] arr, int[] l,
                       int[] r, int[] x,
                       int n, int q)
{
    for (int j = 0; j < q; j++)
    {
        for (int i = l[j]; i <= r[j]; i++)
        {
 
            // Decrement elements between
            // l[j] and r[j] by x[j]
            arr[i] = arr[i] - x[j];
        }
    }
 
    printArr(arr, n);
}
 
// Driver code
public static void Main()
{
    // Final array
    int[] arr = { 20, 30, 20, 70, 100 };
 
    // Size of the array
    int n = arr.Length;
 
    // Queries
    int[] l = { 0, 1, 3 };
    int[] r = { 2, 4, 4 };
    int[] x = { 10, 20, 30 };
 
    // Number of queries
    int q = l.Length;
 
    findOrgArr(arr, l, r, x, n, q);
 
}
}
 
// This code is contributed by
// Akanksha Rai


PHP




<?php
// PHP implementation of the approach
 
// Utility function to print the contents
// of an array
function printArr(&$arr, $n)
{
    for ($i = 0; $i < $n; $i++)
    {
        echo($arr[$i]);
        echo(" ");
    }
}
 
// Function to find the original array
function findOrgArr(&$arr, &$l, &$r,
                        &$x, $n, $q)
{
    for ($j = 0; $j < $q; $j++)
    {
        for ($i = $l[$j]; $i <= $r[$j]; $i++)
        {
 
            // Decrement elements between
            // l[j] and r[j] by x[j]
            $arr[$i] = $arr[$i] - $x[$j];
        }
    }
 
    printArr($arr, $n);
}
 
// Driver code
 
// Final array
$arr = array(20, 30, 20, 70, 100);
 
// Size of the array
$n = sizeof($arr);
 
// Queries
$l = array(0, 1, 3 );
$r = array( 2, 4, 4 );
$x = array(10, 20, 30 );
 
// Number of queries
$q = sizeof($l);
 
findOrgArr($arr, $l, $r, $x, $n, $q);
 
// This code is contributed by Shivi_Aggarwal
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Utility function to print the contents of an array
function printArr(arr,n)
{
    for (let i = 0; i < n; i++) {
        document.write(arr[i]+" ");
    }
}
 
// Function to find the original array
function findOrgArr(arr,l,r,x,n,q)
{
     for (let j = 0; j < q; j++) {
        for (let i = l[j]; i <= r[j]; i++) {
   
            // Decrement elements between
            // l[j] and r[j] by x[j]
            arr[i] = arr[i] - x[j];
        }
    }
   
    printArr(arr, n);
}
 
// Driver code
 
// Final array
let arr = [ 20, 30, 20, 70, 100 ];
 
// Size of the array
let n =  arr.length;
 
// Queries
let l = [ 0, 1, 3 ];
let r = [ 2, 4, 4 ];
let x = [ 10, 20, 30 ];
 
// Number of queries
let q = l.length;
 
findOrgArr(arr, l, r, x, n, q);
 
         
// This code is contributed by patel2127
</script>


Output

10 0 -10 20 50 

Complexity Analysis:

  • Time Complexity: O(n2)
  • Auxiliary Space: O(1)

Efficient Approach: 

Follow the following steps to reach the initial array: 

  • Take an array b[] of the size of the given array and initialize all of its elements with 0.
  • In array b[], for every query update b[l] = b[l] – x and b[r + 1] = b[r + 1] + x if r + 1 < n. This is because x will cancel out the effect of -x when performed the prefix sum.
  • Take the prefix sum of array b[], and add it to the given array which will produce the initial array.

Implementation:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to print the contents of an array
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
}
 
// Function to find the original array
void findOrgArr(int arr[], int l[], int r[], int x[],
                int n, int q)
{
    int b[n] = { 0 };
 
    for (int i = 0; i < q; i++) {
 
        // Decrement the element at l[i]th index by -x
        b[l[i]] += -x[i];
 
        // Increment the element at (r[i] + 1)th index
        // by x if (r[i] + 1) is a valid index
        if (r[i] + 1 < n)
            b[r[i] + 1] += x[i];
    }
 
    for (int i = 1; i < n; i++)
        // Prefix sum of array b
        b[i] = b[i - 1] + b[i];
 
    // Update the original array
    for (int i = 0; i < n; i++)
        arr[i] = arr[i] + b[i];
 
    printArr(arr, n);
}
 
// Driver code
int main()
{
    // Final array
    int arr[] = { 20, 30, 20, 70, 100 };
 
    // Size of the array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Queries
    int l[] = { 0, 1, 3 };
    int r[] = { 2, 4, 4 };
    int x[] = { 10, 20, 30 };
 
    // Number of queries
    int q = sizeof(l) / sizeof(l[0]);
 
    findOrgArr(arr, l, r, x, n, q);
 
    return 0;
}


Java




// Java implementation of above approach
class GFG{
 
    // Utility function to print the contents of an array
    static void printArr(int arr[], int n)
    {
        for (int i = 0; i < n; i++)
        {
        System.out.print(arr[i] + " ") ;
        }
    }
     
    // Function to find the original array
    static void findOrgArr(int arr[], int l[], int r[], int x[],
                    int n, int q)
    {
        int b[] = new int[n] ;
         
        for (int i = 0; i < q; i++)
            b[i] = 0 ;
     
        for (int i = 0; i < q; i++)
        {
     
            // Decrement the element at l[i]th index by -x
            b[l[i]] += -x[i];
     
            // Increment the element at (r[i] + 1)th index
            // by x if (r[i] + 1) is a valid index
            if (r[i] + 1 < n)
                b[r[i] + 1] += x[i];
        }
     
        for (int i = 1; i < n; i++)
            // Prefix sum of array b
            b[i] = b[i - 1] + b[i];
     
        // Update the original array
        for (int i = 0; i < n; i++)
            arr[i] = arr[i] + b[i];
     
        printArr(arr, n);
    }
     
    // Driver code
    public static void main(String []args)
    {
        // Final array
        int arr[] = { 20, 30, 20, 70, 100 };
     
        // Size of the array
        int n = arr.length ;
     
        // Queries
        int l[] = { 0, 1, 3 };
        int r[] = { 2, 4, 4 };
        int x[] = { 10, 20, 30 };
     
        // Number of queries
        int q = l.length ;
     
        findOrgArr(arr, l, r, x, n, q);
        }
}
 
// This code is contributed by aishwarya.27


Python3




# Python3 implementation of the approach
 
# Utility function to print the contents
# of an array
def printArr(arr, n):
 
    for i in range(n):
        print(arr[i], end = " ")
 
 
# Function to find the original array
def findOrgArr(arr, l, r, x, n, q):
 
    b = [0 for i in range(n)]
 
    for i in range(q):
 
        # Decrement the element at l[i]th
        # index by -x
        b[l[i]] += -x[i]
 
        # Increment the element at (r[i] + 1)th
        # index by x if (r[i] + 1) is a valid index
        if (r[i] + 1 < n):
            b[r[i] + 1] += x[i]
     
    for i in range(n):
         
        # Prefix sum of array b
        b[i] = b[i - 1] + b[i]
 
    # Update the original array
    for i in range(n):
        arr[i] = arr[i] + b[i]
 
    printArr(arr, n)
 
# Driver code
arr = [20, 30, 20, 70, 100]
 
# Size of the array
n = len(arr)
 
# Queries
l = [0, 1, 3 ]
r = [2, 4, 4 ]
x = [10, 20, 30 ]
 
# Number of queries
q = len(l)
 
findOrgArr(arr, l, r, x, n, q)
 
# This code Is contributed by
# Mohit kumar 29


C#




// C# implementation of above approach
using System;
 
class GFG
{
 
// Utility function to print the
// contents of an array
static void printArr(int[] arr, int n)
{
    for (int i = 0; i < n; i++)
    {
        Console.Write(arr[i] + " ");
    }
}
 
// Function to find the original array
static void findOrgArr(int[] arr, int[] l,
                       int[] r, int[] x,
                       int n, int q)
{
    int[] b = new int[n];
     
    for (int i = 0; i < q; i++)
        b[i] = 0 ;
 
    for (int i = 0; i < q; i++)
    {
 
        // Decrement the element at l[i]th
        // index by -x
        b[l[i]] += -x[i];
 
        // Increment the element at (r[i] + 1)th
        // index by x if (r[i] + 1) is a valid index
        if (r[i] + 1 < n)
            b[r[i] + 1] += x[i];
    }
 
    for (int i = 1; i < n; i++)
     
        // Prefix sum of array b
        b[i] = b[i - 1] + b[i];
 
    // Update the original array
    for (int i = 0; i < n; i++)
        arr[i] = arr[i] + b[i];
 
    printArr(arr, n);
}
 
// Driver code
public static void Main()
{
    // Final array
    int[] arr = { 20, 30, 20, 70, 100 };
 
    // Size of the array
    int n = arr.Length;
 
    // Queries
    int[] l = { 0, 1, 3 };
    int[] r = { 2, 4, 4 };
    int[] x = { 10, 20, 30 };
 
    // Number of queries
    int q = l.Length;
 
    findOrgArr(arr, l, r, x, n, q);
}
}
 
// This code is contributed
// by Akanksha Rai


Javascript




<script>
 // Javascript implementation of above approach
 
// Utility function to print the contents of an array
function printArr(arr, n)
    {
         
        console.log(arr.join(' ')) ;
        
    }
    // Function to find the original array
 function findOrgArr(arr,l,r,x,n,q)
    {
       let b = new Array(n) ;
         
        for (let i = 0; i < n; i++)
            b[i] = 0 ;
     
        for (let i = 0; i < q; i++)
        {
     
            // Decrement the element at l[i]th index by -x
            b[l[i]] += -x[i];
     
            // Increment the element at (r[i] + 1)th index
            // by x if (r[i] + 1) is a valid index
            if (r[i] + 1 < n)
                b[r[i] + 1] += x[i];
        }
        for (let i = 1; i < n; i++)
            // Prefix sum of array b
            b[i] = b[i - 1] + b[i];
     
        // Update the original array
        for (let i = 0; i < n; i++)
            arr[i] = arr[i] + b[i];
     
        printArr(arr, n);
    }
     
    // Driver code
      
        // Final array
        let arr = [ 20, 30, 20, 70, 100 ];
     
        // Size of the array
        let n = arr.length ;
     
        // Queries
        let l = [ 0, 1, 3 ];
        let r = [ 2, 4, 4 ];
        let x = [ 10, 20, 30 ];
     
        // Number of queries
        let q = l.length ;
         
       // Function call
        findOrgArr(arr, l, r, x, n, q); 
         
        // This code is contributed by aarohirai2616.
 </script>      


Output

10 0 -10 20 50 

Complexity Analysis:

  • Time Complexity: O(n)
  • Auxiliary Space: O(n) 
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments