Saturday, January 18, 2025
Google search engine
HomeData Modelling & AICount subarrays having even Bitwise XOR

Count subarrays having even Bitwise XOR

Given an array arr[] of size N, the task is to count the number of subarrays from the given array whose Bitwise XOR  is even.

Examples:

Input: arr[] = {1, 2, 3, 4}
Output: 4
Explanation: The subarrays having even Bitwise XOR are {{2}, {4}, {1, 2, 3}, {1, 2, 3, 4}}.

Input: arr[] = {2, 4, 6}
Output: 6
Explanation: The subarrays having even Bitwise XOR are {{2}, {4}, {6}, {2, 4}, {4, 6}, {2, 4, 6}}.

Naive Approach: The simplest approach to solve this problem is to generate all possible subarrays and check for every subarray, whether Bitwise XOR of all its elements are even or not. If found to be even, then increase the count. Finally, print the count as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of
// subarrays having even Bitwise XOR
void evenXorSubarray(int arr[], int n)
{
    // Store the required result
    int ans = 0;
 
    // Generate subarrays with
    // arr[i] as the first element
    for (int i = 0; i < n; i++) {
 
        // Store XOR of current subarray
        int XOR = 0;
 
        // Generate subarrays with
        // arr[j] as the last element
        for (int j = i; j < n; j++) {
 
            // Calculate Bitwise XOR
            // of the current subarray
            XOR = XOR ^ arr[j];
 
            // If XOR is even,
            // increase ans by 1
            if ((XOR & 1) == 0)
                ans++;
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 2, 3, 4 };
 
    // Stores the size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    evenXorSubarray(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to count the number of
  // subarrays having even Bitwise XOR
  static void evenXorSubarray(int arr[], int n)
  {
     
    // Store the required result
    int ans = 0;
 
    // Generate subarrays with
    // arr[i] as the first element
    for (int i = 0; i < n; i++) {
 
      // Store XOR of current subarray
      int XOR = 0;
 
      // Generate subarrays with
      // arr[j] as the last element
      for (int j = i; j < n; j++) {
 
        // Calculate Bitwise XOR
        // of the current subarray
        XOR = XOR ^ arr[j];
 
        // If XOR is even,
        // increase ans by 1
        if ((XOR & 1) == 0)
          ans++;
      }
    }
 
    // Print the result
    System.out.println(ans);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    // Given array
    int arr[] = { 1, 2, 3, 4 };
 
    // Stores the size of the array
    int N = arr.length;
    evenXorSubarray(arr, N);
  }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program for the above approach
 
# Function to count the number of
# subarrays having even Bitwise XOR
def evenXorSubarray(arr, n):
   
    # Store the required result
    ans = 0
 
    # Generate subarrays with
    # arr[i] as the first element
    for i in range(n):
 
        # Store XOR of current subarray
        XOR = 0
 
        # Generate subarrays with
        # arr[j] as the last element
        for j in range(i, n):
 
            # Calculate Bitwise XOR
            # of the current subarray
            XOR = XOR ^ arr[j]
 
            # If XOR is even,
            # increase ans by 1
            if ((XOR & 1) == 0):
                ans += 1
 
    # Print the result
    print (ans)
 
# Driver Code
if __name__ == '__main__':
   
    # Given array
    arr = [1, 2, 3, 4]
 
    # Stores the size of the array
    N = len(arr)
 
    # Function Call
    evenXorSubarray(arr, N)
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
class GFG
{
  // Function to count the number of
  // subarrays having even Bitwise XOR
  static void evenXorSubarray(int[] arr, int n)
  {
 
    // Store the required result
    int ans = 0;
 
    // Generate subarrays with
    // arr[i] as the first element
    for (int i = 0; i < n; i++) {
 
      // Store XOR of current subarray
      int XOR = 0;
 
      // Generate subarrays with
      // arr[j] as the last element
      for (int j = i; j < n; j++) {
 
        // Calculate Bitwise XOR
        // of the current subarray
        XOR = XOR ^ arr[j];
 
        // If XOR is even,
        // increase ans by 1
        if ((XOR & 1) == 0)
          ans++;
      }
    }
 
    // Print the result
    Console.WriteLine(ans);
  }
 
  // Driver Code
  public static void Main()
  {
    // Given array
    int[] arr = { 1, 2, 3, 4 };
 
    // Stores the size of the array
    int N = arr.Length;
    evenXorSubarray(arr, N);
  }
}
 
// This code is contributed by souravghosh0416.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number of
// subarrays having even Bitwise XOR
function evenXorSubarray(arr, n)
{
    // Store the required result
    let ans = 0;
 
    // Generate subarrays with
    // arr[i] as the first element
    for (let i = 0; i < n; i++) {
 
        // Store XOR of current subarray
        let XOR = 0;
 
        // Generate subarrays with
        // arr[j] as the last element
        for (let j = i; j < n; j++) {
 
            // Calculate Bitwise XOR
            // of the current subarray
            XOR = XOR ^ arr[j];
 
            // If XOR is even,
            // increase ans by 1
            if ((XOR & 1) == 0)
                ans++;
        }
    }
 
    // Print the result
    document.write(ans);
}
 
// Driver Code
// Given array
let arr = [ 1, 2, 3, 4 ];
 
// Stores the size of the array
let N = arr.length;
 
// Function Call
evenXorSubarray(arr, N);
 
</script>


Output: 

4

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on following observations:

Bitwise XOR of all elements in the range of indices [i + 1, j] be A.
Bitwise XOR of all elements in the range of indices [0, i] be B.
Bitwise XOR of all elements in the range of indices [0, j] be C
By performing B ^ C,  the common elements from the two ranges cancel out, resulting in XOR of all elements from the range [i + 1, j]

Therefore, the idea is to update the number of subarrays starting from index 0, having even and odd XOR values while traversing the array and updating the count accordingly. Follow the steps below to solve the problem:

  • Initialize two variables, say ans and XOR, to store the required count of subarrays and store XOR values of subarrays respectively.
  • Initialize an array, say freq[] of size 2, where freq[0] denotes the number of subarrays having even XOR value, and freq[1] denotes the number of subarrays having odd XOR values, starting from the index 0.
  • Traverse the array, arr[] using a variable, say i, and for each array element:
    • Update the value of XOR to XOR ^ arr[i].
    • If XOR is even, then increase the value of ans by 1 + freq[0].
    • Increment freq[0] by 1, because when subarray {arr[0], i] is XORed with other subarrays having even xor value then it would result in an even XOR value. Also, 1 is added to consider the entire subarray[0, i].
    • Similarly, if XOR is odd, increment ans by freq[1] and increment freq[1] by 1.
  • After completing the above steps, print the value of ans as the result.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarrays
// having even Bitwise XOR
void evenXorSubarray(int arr[], int n)
{
    // Store the required result
    int ans = 0;
 
    // Stores count of subarrays
    // with even and odd XOR values
    int freq[] = { 0, 0 };
 
    // Stores Bitwise XOR of
    // current subarray
    int XOR = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Update current Xor
        XOR = XOR ^ arr[i];
 
        // If XOR is even
        if (XOR % 2 == 0) {
 
            // Update ans
            ans += freq[0] + 1;
 
            // Increment count of
            // subarrays with even XOR
            freq[0]++;
        }
        else {
 
            // Otherwise, increment count
            // of subarrays with odd XOR
            ans += freq[1];
            freq[1]++;
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 2, 3, 4 };
 
    // Stores the size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    evenXorSubarray(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
    // Function to count subarrays
    // having even Bitwise XOR
    static void evenXorSubarray(int arr[], int n)
    {
        // Store the required result
        int ans = 0;
 
        // Stores count of subarrays
        // with even and odd XOR values
        int freq[] = { 0, 0 };
 
        // Stores Bitwise XOR of
        // current subarray
        int XOR = 0;
 
        // Traverse the array
        for (int i = 0; i < n; i++) {
 
            // Update current Xor
            XOR = XOR ^ arr[i];
 
            // If XOR is even
            if (XOR % 2 == 0) {
 
                // Update ans
                ans += freq[0] + 1;
 
                // Increment count of
                // subarrays with even XOR
                freq[0]++;
            }
            else {
 
                // Otherwise, increment count
                // of subarrays with odd XOR
                ans += freq[1];
                freq[1]++;
            }
        }
 
        // Print the result
        System.out.println(ans);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given array
        int arr[] = { 1, 2, 3, 4 };
 
        // Stores the size of the array
        int N = arr.length;
 
        evenXorSubarray(arr, N);
    }
}


Python3




# Python3 program for the above approach
 
# Function to count subarrays
# having even Bitwise XOR
def evenXorSubarray(arr, n):
     
    # Store the required result
    ans = 0
 
    # Stores count of subarrays
    # with even and odd XOR values
    freq = [0] * n
 
    # Stores Bitwise XOR of
    # current subarray
    XOR = 0
 
    # Traverse the array
    for i in range(n):
 
        # Update current Xor
        XOR = XOR ^ arr[i]
 
        # If XOR is even
        if (XOR % 2 == 0):
 
            # Update ans
            ans += freq[0] + 1
 
            # Increment count of
            # subarrays with even XOR
            freq[0] += 1
         
        else:
 
            # Otherwise, increment count
            # of subarrays with odd XOR
            ans += freq[1]
            freq[1] += 1
         
    # Print the result
    print(ans)
 
# Driver Code
 
# Given array
arr = [ 1, 2, 3, 4 ]
 
# Stores the size of the array
N = len(arr)
 
evenXorSubarray(arr, N)
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
class GFG
{
  // Function to count subarrays
  // having even Bitwise XOR
  static void evenXorSubarray(int[] arr, int n)
  {
     
    // Store the required result
    int ans = 0;
 
    // Stores count of subarrays
    // with even and odd XOR values
    int[] freq = { 0, 0 };
 
    // Stores Bitwise XOR of
    // current subarray
    int XOR = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
      // Update current Xor
      XOR = XOR ^ arr[i];
 
      // If XOR is even
      if (XOR % 2 == 0) {
 
        // Update ans
        ans += freq[0] + 1;
 
        // Increment count of
        // subarrays with even XOR
        freq[0]++;
      }
      else {
 
        // Otherwise, increment count
        // of subarrays with odd XOR
        ans += freq[1];
        freq[1]++;
      }
    }
 
    // Print the result
    Console.WriteLine(ans);
  }
 
 
  // Driver Code
  public static void Main(String[] args)
  {
    // Given array
    int[] arr = { 1, 2, 3, 4 };
 
    // Stores the size of the array
    int N = arr.Length;
 
    evenXorSubarray(arr, N);
  }
}
 
// This code is contributed by susmitakundugoaldanga.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count subarrays
// having even Bitwise XOR
function evenXorSubarray(arr, n)
{
    // Store the required result
    let ans = 0;
 
    // Stores count of subarrays
    // with even and odd XOR values
    let freq = [ 0, 0 ];
 
    // Stores Bitwise XOR of
    // current subarray
    let XOR = 0;
 
    // Traverse the array
    for (let i = 0; i < n; i++) {
 
        // Update current Xor
        XOR = XOR ^ arr[i];
 
        // If XOR is even
        if (XOR % 2 == 0) {
 
            // Update ans
            ans += freq[0] + 1;
 
            // Increment count of
            // subarrays with even XOR
            freq[0]++;
        }
        else {
 
            // Otherwise, increment count
            // of subarrays with odd XOR
            ans += freq[1];
            freq[1]++;
        }
    }
 
    // Print the result
    document.write(ans);
}
 
// Driver Code
    // Given array
    let arr = [ 1, 2, 3, 4 ];
 
    // Stores the size of the array
    let N = arr.length;
 
    evenXorSubarray(arr, N);
     
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments