Thursday, January 16, 2025
Google search engine
HomeData Modelling & AISort given Array based on the fractional values

Sort given Array based on the fractional values

Given an array arr[] that contains N real numbers. The task is to sort the array in decreasing order of the Fractional Values

Note: If the values of the fractional part are same then sort those elements in Decreasing order of their Integer Values.

Examples:

Input: arr[] = { 8.33,  -3.85, 1.999, 6.33, 5}
Output:  { 1.999,  8.33,  6.33, -3.85  , 5}
Explanation: 

Element Integer Value Fraction Value

8.33

8

0.33

-3.85

-4

0.15

1.999

1

0.999

6.33

6

0.33

5

5

0.0

1.999 has the biggest fractional value so it will be at index 0 while 5 has the lowest fractional value so it will be at the last index.   
6.33 and 8.33 have the same fractional values but the Integer part of 8.33 is greater than 6.33 so we place 8.33 before 6.33 as the given condition in the problem statement.

Fractional value = Given number  –  Integer Value.  
Fractional Value of  positive value e.g. (8.33) = 8.33 –  Integer Value of  ( 8.33)=  8.33 – 8=  0.33
Fractional Value of  (-3.85) = -3.85- Integer Value of  (-3.85)=  -3.85 –  ( -4 ) = -3.85 + 4 =  0.15

Hence, the order for the above example will be: {1.999, 8.33, 6.33, -3.85, 5}

Input:  arr[] = { 1.1, 1.11, 1.111, 2.1, 2.11, 2.111}
Output: { 2.111, 1.111, 2.11, 1.11, 2.1, 1.1 }
Explanation: Here the biggest fractional value is 0.111 which is present in both 2.111 and 1.111. But the integer value of 2.111 is greater than 1.111. so, 2.111 will come before 1.111. The same applies to other elements.

 

Naive Approach: The basic idea to solve the problem is to store the pair of {Fractional value, Integer value} in a vector and then sort the vector in descending order of fractional part. Lastly reverse the vector for the final answer as the desired answer should be in descending order.

Below is the implementation of the above approach:

C++




// C++ program to sort Array
// in descending order of fractional value
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to sort the fractional part
void SortFraction(long double arr[], int n)
{
 
    // To store fraction and it's
    // corresponding integer and the
    // original element
    vector<pair<pair<long double, int>,
                long double> >
        v;
    for (int i = 0; i < n; i++) {
 
        // Calculate fractional value
        long double fraction
            = arr[i] - floorl(arr[i]);
 
        // Calculate integer value
        int integer = floorl(arr[i]);
 
        v.push_back({ make_pair(fraction,
                                integer),
                      arr[i] });
    }
 
    // Sort the vector
    sort(v.begin(), v.end());
 
    // To get final answer,
    // reverse the vector
    reverse(v.begin(), v.end());
 
    // To print output
    for (int i = 0; i < n; i++)
        cout << v[i].second << " ";
}
 
// Driver Code
int main()
{
    long double arr[] = { 8.33, -3.85,
                          1.999, 6.33, 5 };
 
    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Sort in descending order
    // of fractional value
    SortFraction(arr, N);
    return 0;
}


Java




import java.util.*;
import java.io.*;
 
class GFG{
 
    // Function to sort the fractional part
    public static void SortFraction(double arr[], int n){
 
        // To store fraction and it's
        // corresponding integer and the
        // original element
        ArrayList<ArrayList<Double>> v = new ArrayList<ArrayList<Double>>();
 
        for(int i=0 ; i<n ; i++){
 
            // Calculate fractional value
            double fraction = arr[i]-Math.floor((double)arr[i]);
 
            // Calculate integer value
            double integer = Math.floor((double)arr[i]);
 
            ArrayList<Double> temp = new ArrayList<Double>();
            temp.add(fraction);
            temp.add(integer);
            temp.add(arr[i]);
            v.add(temp);
        }
 
        // Sort the vector
        Collections.sort(v,new Comp());
         
        // To get final answer,
        // reverse the vector
        Collections.reverse(v);
 
        // To print output
        for(int i=0 ; i<n ; i++){
            System.out.print(v.get(i).get(2) + " ");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        // Size of array
        int N = 5;
        double arr[] = {8.33, -3.85, 1.999, 6.33, 5};
 
        // Sort in descending order
        // of fractional value
        SortFraction(arr, N);
    }
}
 
class Comp implements Comparator<ArrayList<Double>>{
    public int compare(ArrayList<Double> a, ArrayList<Double> b){
        for(int i=0 ; i<2 ; i++){
            if(a.get(i).equals(b.get(i))){
                continue;
            }
            return a.get(i).compareTo(b.get(i));
        }
        return a.get(2).compareTo(b.get(2));
    }
};
 
// This code is contributed by subhamgoyal2014.


Python3




# Python program to sort Array
# in descending order of fractional value
import math
 
# Function to sort the fractional part
def SortFraction (arr, n) :
 
    # To store fraction and it's
    # corresponding integer and the
    # original element
    v = []
    for i in range(n) :
         
        # Calculate fractional value
        fraction = arr[i] - math.floor(arr[i])
 
        # Calculate integer value
        integer = math.floor(arr[i])
 
        v.append([[fraction, integer], arr[i]])
     
    # Sort the vector
    v.sort()
     
    # To get final answer,
    # reverse the vector
    v.reverse()
     
    # To print output
    for i in range(n) :
        print(v[i][1],end=' ')
     
# Driver Code
if __name__ == "__main__":
     
    arr = [8.33, -3.85, 1.999, 6.33, 5]
     
    # Size of array
    N = len(arr)
     
    # Sort in descending order
    # of fractional value
    SortFraction(arr, N)
     
    # This code is contributed by jana_sayantan.


C#




// C# code
using System;
using System.Collections.Generic;
 
class Program {
 
    // Function to sort the fractional part
    public static void SortFraction(double[] arr, int n){
 
        // To store fraction and it's
        // corresponding integer and the
        // original element
        List<List<double>> v = new List<List<double>>();
 
        for(int i=0 ; i<n ; i++){
 
            // Calculate fractional value
            double fraction = arr[i]-Math.Floor((double)arr[i]);
 
            // Calculate integer value
            double integer = Math.Floor((double)arr[i]);
 
            List<double> temp = new List<double>();
            temp.Add(fraction);
            temp.Add(integer);
            temp.Add(arr[i]);
            v.Add(temp);
        }
 
        // Sort the list
        v.Sort(new Comp());
         
        // To get final answer,
        // reverse the list
        v.Reverse();
 
        // To print output
        foreach(var item in v){
            Console.Write(item[2]+ " ");
        }
    }
 
    // Driver code
    public static void Main(string[] args){
        // Size of array
        int N = 5;
        double[] arr = {8.33, -3.85, 1.999, 6.33, 5};
 
        // Sort in descending order
        // of fractional value
        SortFraction(arr, N);
    }
}
 
class Comp : IComparer<List<double>>{
    public int Compare(List<double> a, List<double> b){
        for(int i=0 ; i<2 ; i++){
            if(a[i].Equals(b[i])){
                continue;
            }
            return a[i].CompareTo(b[i]);
        }
        return a[2].CompareTo(b[2]);
    }
};
 
 
// This code is contributed by Utkarsh


Javascript




<script>
    // JavaScript program to sort Array
    // in descending order of fractional value
 
    // Function to sort the fractional part
    const SortFraction = (arr, n) => {
 
        // To store fraction and it's
        // corresponding integer and the
        // original element
        let v = [];
        for (let i = 0; i < n; i++) {
 
            // Calculate fractional value
            let fraction = arr[i] - Math.floor(arr[i]);
 
            // Calculate integer value
            let integer = Math.floor(arr[i]);
 
            v.push([[fraction, integer], arr[i]]);
        }
 
        // Sort the vector
        v.sort();
 
        // To get final answer,
        // reverse the vector
        v.reverse();
 
        // To print output
        for (let i = 0; i < n; i++)
            document.write(`${v[i][1]} `);
    }
 
    // Driver Code
 
    let arr = [8.33, -3.85, 1.999, 6.33, 5];
 
    // Size of array
    let N = arr.length;
 
    // Sort in descending order
    // of fractional value
    SortFraction(arr, N);
 
// This code is contributed by rakeshsahni
 
</script>


Output

1.999 8.33 6.33 -3.85 5 

Time Complexity: O(N * logN)
Auxiliary Space: O(N)

Efficient Approach: The idea to solve the problem in optimized way is by using Comparator, to sort the vector. 

Follow the steps to solve the problem:

  • Firstly, make a comparator function to sort the array according to the requirements given in the problem.
    • Return true if fraction of a > fraction of b, to sort the elements in decreasing order of the fractional Values.
    • If fraction of a = fraction of b then return true if integer of a > integer of b
    • Return False in every other case.
  • The final array is the required sorted array.

Below is the implementation of the above approach:

C++




// C++ program to sort Array
// in descending order of fractional value
 
#include <bits/stdc++.h>
using namespace std;
 
// Comparator to sort array
// according to question
bool comp(long double a, long double b)
{
    int int_a = floorl(a);
    int int_b = floorl(b);
 
    long double fraction_a = a - int_a;
    long double fraction_b = b - int_b;
 
    if (fraction_a > fraction_b)
        return true;
 
    if (fraction_a == fraction_b) {
        if (int_a > int_b)
            return true;
        else
            return false;
    }
    return false;
}
 
// Function to print answer
void print(long double arr[], int n)
{
    // Sort in descending order of
    // fractional value pass comp to sort
    sort(arr, arr + n, comp);
 
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver Code
int main()
{
    long double arr[]
        = { 8.33, -3.85, 1.999, 6.33, 5 };
 
    // Size of arr
    int N = sizeof(arr) / sizeof(arr[0]);
    print(arr, N);
    return 0;
}


Java




// Java  program to sort Array
// in descending order of fractional value
import java.util.Arrays;
import java.util.Comparator;
 
public class Main
{
 
  // Comparator to sort array
  // according to question
  static class FractionalComparator implements Comparator<Double> {
    @Override
    public int compare(Double a, Double b) {
      int int_a = (int) Math.floor(a);
      int int_b = (int) Math.floor(b);
 
      double fraction_a = a - int_a;
      double fraction_b = b - int_b;
 
      if (fraction_a > fraction_b) {
        return -1;
      }
 
      if (fraction_a == fraction_b) {
        if (int_a > int_b) {
          return -1;
        } else {
          return 1;
        }
      }
      return 1;
    }
  }
 
  // Driver Code
  public static void main(String[] args) {
    Double[] arr = { 8.33, -3.85, 1.999, 6.33, 5.0 };
     
    // Sort in descending order of
    // fractional value pass comp to sort
    Arrays.sort(arr, new FractionalComparator());
 
    // Function to print answer
    for (Double number : arr) {
      System.out.print(number + " ");
    }
  }
}
 
// This code is contributed by ratiagrawal.


Python3




# Python program to sort Array
# in descending order of fractional value
import math
from functools import cmp_to_key
 
# Comparator to sort array
# according to question
from functools import cmp_to_key
 
def comp(a, b):
    int_a = math.floor(a)
    int_b = math.floor(b)
    fraction_a = a - int_a
    fraction_b = b - int_b
    if (fraction_a > fraction_b):
        return 1
    if (fraction_a == fraction_b):
        if (int_a > int_b):
            return 1
        else:
            return -1
    return -1
 
 
# Function to print answer
def Print(arr,n):
    # Sort in descending order of
    # fractional value pass comp to sort
    b=sorted(arr,key=cmp_to_key(comp),reverse=True)
    for i in range(n):
        print(b[i],end=' ')
 
# Driver Code
if __name__ == "__main__":
     
    arr = [8.33, -3.85, 1.999, 6.33, 5]
     
    # Size of array
    N = len(arr)
     
    Print(arr,N)
     
# This code is contributed by Pushpesh Raj.


C#




using System;
using System.Collections.Generic;
 
public class Program
{
  // Comparator to sort array
  // according to question
  class FractionalComparator : IComparer<double>
  {
    public int Compare(double a, double b)
    {
      int int_a = (int)Math.Floor(a);
      int int_b = (int)Math.Floor(b);
 
      double fraction_a = a - int_a;
      double fraction_b = b - int_b;
 
      if (fraction_a > fraction_b)
      {
        return -1;
      }
 
      if (fraction_a == fraction_b)
      {
        if (int_a > int_b)
        {
          return -1;
        }
        else
        {
          return 1;
        }
      }
      return 1;
    }
  }
 
  // Main method
  static void Main(string[] args)
  {
    Double[] arr = { 8.33, -3.85, 1.999, 6.33, 5.0 };
 
    // Sort in descending order of
    // fractional value pass comp to sort
    Array.Sort(arr, new FractionalComparator());
 
    // Function to print answer
    for (int i = 0; i < arr.Length; i++)
    {
      Console.Write(arr[i] + " ");
    }
  }
}
 
// This code is contributed by lokeshpotta20.


Javascript




function comp(a, b) {
    const int_a = Math.floor(a);
    const int_b = Math.floor(b);
    const fraction_a = a - int_a;
    const fraction_b = b - int_b;
    if (fraction_a > fraction_b) {
        return 1;
    }
    if (fraction_a === fraction_b) {
        if (int_a > int_b) {
            return 1;
        } else {
            return -1;
        }
    }
    return -1;
}
 
function Print(arr, n) {
    // Sort in descending order of fractional value
    // pass comp to sort
    const b = arr.sort(comp).reverse();
    for (let i = 0; i < n; i++) {
        console.log(b[i] + " ");
    }
}
 
const arr = [8.33, -3.85, 1.999, 6.33, 5];
 
// Size of array
const N = arr.length;
 
Print(arr, N);


Output

1.999 8.33 6.33 -3.85 5 

Time Complexity: O(N * logN)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments