Thursday, January 16, 2025
Google search engine
HomeData Modelling & AICheck if difference of areas of two squares is prime

Check if difference of areas of two squares is prime

Given two squares with side lengths a     and b     (a > b). The task is to check if difference of their areas is prime or not. Here side length could be large ( 1 < b < a < 1012).
Examples
 

Input : a = 6, b = 5
Output : Yes

Input : a = 61690850361, b = 24777622630    
Output : No

 

Approach: Since the sides are a     and b     . Therefore, difference of their areas = (a2 – b2), which can be expressed as (a – b)(a + b) . This is prime if and only if a – b = 1 and a + b is a prime . Since a+b is at most 2×1012, we can use trial division to check its primality.
Below is the implementation of the above idea: 
 

C++




// C++ program to check if difference of
// areas of two squares is prime or not
// when side length is large
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if number is prime
bool isPrime(long long int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (long long int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to check if difference of areas of
// square is prime
bool isDiffPrime(long long int a, long long int b)
{
    // when a+b is prime and a-b is 1
    if (isPrime(a + b) && a - b == 1)
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
    long long int a = 6, b = 5;
 
    if (isDiffPrime(a, b))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java program to check if difference
// of areas of two squares is prime or
// not when side length is large
class GFG
{
     
// Function to check if number
// is prime
static boolean isPrime(long n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (long i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to check if difference
// of areas of square is prime
static boolean isDiffPrime(long a, long b)
{
    // when a+b is prime and a-b is 1
    if (isPrime(a + b) && a - b == 1)
        return true;
    else
        return false;
}
 
// Driver code
public static void main(String []args)
{
    long a = 6, b = 5;
 
    if (isDiffPrime(a, b))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by ihritik


C#




// C# program to check if difference
// of areas of two squares is prime
// or not when side length is large
using System;
 
class GFG
{
// Function to check if number
// is prime
static bool isPrime(long n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we
    // can skip middle five numbers
    // in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (long i = 5;
              i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to check if difference
// of areas of square is prime
static bool isDiffPrime(long a, long b)
{
    // when a+b is prime and a-b is 1
    if (isPrime(a + b) && a - b == 1)
        return true;
    else
        return false;
}
 
// Driver code
public static void Main()
{
    long a = 6, b = 5;
 
    if (isDiffPrime(a, b))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by ihritik


Python3




# Python3 program to check if
# difference of areas of two
# squares is prime or not when
# side length is large
 
def isPrime(n) :
     
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
 
    # This is checked so that we 
    # can skip middle five numbers
    # in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
 
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
 
    return True
 
# Function to check if difference
# of areas of square is prime
def isDiffPrime(a, b):
 
    # when a+b is prime and a-b is 1
    if (isPrime(a + b) and a - b == 1):
        return True
    else:
        return False
 
# Driver code
a = 6
b = 5
 
if (isDiffPrime(a, b)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by ihritik


PHP




<?php
// PHP program to check if difference
// of areas of two squares is prime
// or not when side length is large
function isPrime($n)
{
     
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return true;
 
    // This is checked so that we
    // can skip middle five numbers
    // in below loop
    if ($n % 2 == 0 || $n % 3 == 0)
        return false;
 
    for($i = 5; $i * $i <= $n;
                $i = $i + 6)
        if ($n % $i == 0 ||
            $n % ($i + 2) == 0)
        return false;
 
    return true;
}
 
// Function to check if difference
// of areas of square is prime
function isDiffPrime($a, $b)
{
    # when a+b is prime and a-b is 1
    if (isPrime($a + $b) &&
                $a - $b == 1)
        return true;
    else
        return false;
 
}
 
// Driver code
$a = 6;
$b = 5;
 
if (isDiffPrime($a, $b))
    echo "Yes";
else
    echo "No";
 
// This code is contributed by ihritik
?>


Javascript




<script>
// Javascript program to check if difference
// of areas of two squares is prime
// or not when side length is large
function isPrime(n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we
    // can skip middle five numbers
    // in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for(let i = 5; i * i <= n;
                i = i + 6)
        if (n % i == 0 ||
            n % (i + 2) == 0)
        return false;
 
    return true;
}
 
// Function to check if difference
// of areas of square is prime
function isDiffPrime(a, b)
{
    // when a+b is prime and a-b is 1
    if (isPrime(a + b) &&
                a - b == 1)
        return true;
    else
        return false;
 
}
 
// Driver code
let a = 6;
let b = 5;
 
if (isDiffPrime(a, b))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by Saurabh Jaiswal
</script>


Output: 

Yes

 

Time Complexity: O(sqrtn)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments