Prerequisite: Segment Trees
Given a binary array arr[] consisting of only 0’s and 1’s and a 2D array Q[][] consisting of K queries, the task is to find the minimum distance between two 0’s in the range [L, R] of the array for every query {L, R}.
Examples:
Input: arr[] = {1, 0, 0, 1}, Q[][] = {{0, 2}}
Output: 1
Explanation:
Clearly, in the range [0, 2], the first 0 lies at index 1 and last at index 2.
Minimum distance = 2 – 1 = 1.Input: arr[] = {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0}, Q[][] = {{3, 9}, {10, 13}}
Output: 2 3
Explanation:
In the range [3, 9], the minimum distance between 0’s is 2 (Index 4 and 6).
In the range [10, 13], the minimum distance between 0’s is 3 (Index 10 and 13).
Approach: The idea is to use a segment tree to solve this problem:
- Every node in the segment tree will have the index of leftmost 0 as well as rightmost 0 and an integer containing the minimum distance between 0’s in the subarray {L, R}.
- Let min be the minimum distance between two zeroes. Then, the value of min can be found after forming the segment tree as:
min = minimum(value of min in the left node, the value of min in the right node, and the difference between the leftmost index of 0 in right node and rightmost index of 0 in left node). - After computing and storing the minimum distance for every node, all the queries can be answered in logarithmic time.
Below is the implementation of the above approach:
C++
// C++ program to find the minimum // distance between two elements // with value 0 within a subarray (l, r) #include <bits/stdc++.h> using namespace std; // Structure for each node // in the segment tree struct node { int l0, r0; int min0; } seg[100001]; // A utility function for // merging two nodes node task(node l, node r) { node x; x.l0 = (l.l0 != -1) ? l.l0 : r.l0; x.r0 = (r.r0 != -1) ? r.r0 : l.r0; x.min0 = min(l.min0, r.min0); // If both the nodes are valid if (l.r0 != -1 && r.l0 != -1) // Computing the minimum distance to store // in the segment tree x.min0 = min(x.min0, r.l0 - l.r0); return x; } // A recursive function that constructs // Segment Tree for given string void build( int qs, int qe, int ind, int arr[]) { // If start is equal to end then // insert the array element if (qs == qe) { if (arr[qs] == 0) { seg[ind].l0 = seg[ind].r0 = qs; seg[ind].min0 = INT_MAX; } else { seg[ind].l0 = seg[ind].r0 = -1; seg[ind].min0 = INT_MAX; } return ; } int mid = (qs + qe) >> 1; // Build the segment tree // for range qs to mid build(qs, mid, ind << 1, arr); // Build the segment tree // for range mid+1 to qe build(mid + 1, qe, ind << 1 | 1, arr); // Merge the two child nodes // to obtain the parent node seg[ind] = task(seg[ind << 1], seg[ind << 1 | 1]); } // Query in a range qs to qe node query( int qs, int qe, int ns, int ne, int ind) { node x; x.l0 = x.r0 = -1; x.min0 = INT_MAX; // If the range lies in this segment if (qs <= ns && qe >= ne) return seg[ind]; // If the range is out of the bounds // of this segment if (ne < qs || ns > qe || ns > ne) return x; // Else query for the right and left // child node of this subtree // and merge them int mid = (ns + ne) >> 1; node l = query(qs, qe, ns, mid, ind << 1); node r = query(qs, qe, mid + 1, ne, ind << 1 | 1); x = task(l, r); return x; } // Driver code int main() { int arr[] = { 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 }; int n = sizeof (arr) / sizeof (arr[0]); // Build the segment tree build(0, n - 1, 1, arr); // Queries int Q[][2] = { { 3, 9 }, { 10, 13 } }; for ( int i = 0; i < 2; i++) { // Finding the answer for every query // and printing it node ans = query(Q[i][0], Q[i][1], 0, n - 1, 1); cout << ans.min0 << endl; } return 0; } |
Java
// Java program to find the minimum // distance between two elements // with value 0 within a subarray (l, r) public class GFG{ // Structure for each Node // in the segment tree static class Node { int l0, r0; int min0; }; static Node[] seg = new Node[ 100001 ]; // A utility function for // merging two Nodes static Node task(Node l, Node r) { Node x = new Node(); x.l0 = (l.l0 != - 1 ) ? l.l0 : r.l0; x.r0 = (r.r0 != - 1 ) ? r.r0 : l.r0; x.min0 = Math.min(l.min0, r.min0); // If both the Nodes are valid if (l.r0 != - 1 && r.l0 != - 1 ) // Computing the minimum distance to store // in the segment tree x.min0 = Math.min(x.min0, r.l0 - l.r0); return x; } // A recursive function that constructs // Segment Tree for given string static void build( int qs, int qe, int ind, int arr[]) { // If start is equal to end then // insert the array element if (qs == qe) { if (arr[qs] == 0 ) { seg[ind].l0 = seg[ind].r0 = qs; seg[ind].min0 = Integer.MAX_VALUE; } else { seg[ind].l0 = seg[ind].r0 = - 1 ; seg[ind].min0 = Integer.MAX_VALUE; } return ; } int mid = (qs + qe) >> 1 ; // Build the segment tree // for range qs to mid build(qs, mid, ind << 1 , arr); // Build the segment tree // for range mid+1 to qe build(mid + 1 , qe, ind << 1 | 1 , arr); // Merge the two child Nodes // to obtain the parent Node seg[ind] = task(seg[ind << 1 ], seg[ind << 1 | 1 ]); } // Query in a range qs to qe static Node query( int qs, int qe, int ns, int ne, int ind) { Node x = new Node(); x.l0 = x.r0 = - 1 ; x.min0 = Integer.MAX_VALUE; // If the range lies in this segment if (qs <= ns && qe >= ne) return seg[ind]; // If the range is out of the bounds // of this segment if (ne < qs || ns > qe || ns > ne) return x; // Else query for the right and left // child Node of this subtree // and merge them int mid = (ns + ne) >> 1 ; Node l = query(qs, qe, ns, mid, ind << 1 ); Node r = query(qs, qe, mid + 1 , ne, ind << 1 | 1 ); x = task(l, r); return x; } // Driver code public static void main(String[] args) { for ( int i = 0 ; i < 100001 ; i++) { seg[i] = new Node(); } int arr[] = { 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 }; int n = arr.length; // Build the segment tree build( 0 , n - 1 , 1 , arr); // Queries int [][] Q = { { 3 , 9 }, { 10 , 13 } }; for ( int i = 0 ; i < 2 ; i++) { // Finding the answer for every query // and printing it Node ans = query(Q[i][ 0 ], Q[i][ 1 ], 0 , n - 1 , 1 ); System.out.println(ans.min0); } } } // This code is contributed by sanjeev2552 |
Python3
# Python3 program to find the minimum # distance between two elements with # value 0 within a subarray (l, r) import sys # Structure for each node # in the segment tree class node(): def __init__( self ): self .l0 = 0 self .r0 = 0 min0 = 0 seg = [node() for i in range ( 100001 )] # A utility function for # merging two nodes def task(l, r): x = node() x.l0 = l.l0 if (l.l0 ! = - 1 ) else r.l0 x.r0 = r.r0 if (r.r0 ! = - 1 ) else l.r0 x.min0 = min (l.min0, r.min0) # If both the nodes are valid if (l.r0 ! = - 1 and r.l0 ! = - 1 ): # Computing the minimum distance to # store in the segment tree x.min0 = min (x.min0, r.l0 - l.r0) return x # A recursive function that constructs # Segment Tree for given string def build(qs, qe, ind, arr): # If start is equal to end then # insert the array element if (qs = = qe): if (arr[qs] = = 0 ): seg[ind].l0 = seg[ind].r0 = qs seg[ind].min0 = sys.maxsize else : seg[ind].l0 = seg[ind].r0 = - 1 seg[ind].min0 = sys.maxsize return mid = (qs + qe) >> 1 # Build the segment tree # for range qs to mid build(qs, mid, ind << 1 , arr) # Build the segment tree # for range mid+1 to qe build(mid + 1 , qe, ind << 1 | 1 , arr) # Merge the two child nodes # to obtain the parent node seg[ind] = task(seg[ind << 1 ], seg[ind << 1 | 1 ]) # Query in a range qs to qe def query(qs, qe, ns, ne, ind): x = node() x.l0 = x.r0 = - 1 x.min0 = sys.maxsize # If the range lies in this segment if (qs < = ns and qe > = ne): return seg[ind] # If the range is out of the bounds # of this segment if (ne < qs or ns > qe or ns > ne): return x # Else query for the right and left # child node of this subtree # and merge them mid = (ns + ne) >> 1 l = query(qs, qe, ns, mid, ind << 1 ) r = query(qs, qe, mid + 1 , ne, ind << 1 | 1 ) x = task(l, r) return x # Driver code if __name__ = = "__main__" : arr = [ 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 ] n = len (arr) # Build the segment tree build( 0 , n - 1 , 1 , arr) # Queries Q = [ [ 3 , 9 ], [ 10 , 13 ] ] for i in range ( 2 ): # Finding the answer for every query # and printing it ans = query(Q[i][ 0 ], Q[i][ 1 ], 0 , n - 1 , 1 ) print (ans.min0) # This code is contributed by rutvik_56 |
C#
// C# program to find the minimum // distance between two elements // with value 0 within a subarray (l, r) using System; // Structure for each node // in the segment tree class Node { public int l0, r0; public int min0; } class GFG { static Node[] seg = new Node[100001]; // A utility function for // merging two nodes static Node task(Node l, Node r) { Node x = new Node(); x.l0 = (l.l0 != -1) ? l.l0 : r.l0; x.r0 = (r.r0 != -1) ? r.r0 : l.r0; x.min0 = Math.Min(l.min0, r.min0); // If both the nodes are valid if (l.r0 != -1 && r.l0 != -1) // Computing the minimum distance to store // in the segment tree x.min0 = Math.Min(x.min0, r.l0 - l.r0); return x; } // A recursive function that constructs // Segment Tree for given string static void build( int qs, int qe, int ind, int [] arr) { // If start is equal to end then // insert the array element if (qs == qe) { if (arr[qs] == 0) { seg[ind].l0 = seg[ind].r0 = qs; seg[ind].min0 = int .MaxValue; } else { seg[ind].l0 = seg[ind].r0 = -1; seg[ind].min0 = int .MaxValue; } return ; } int mid = (qs + qe) >> 1; // Build the segment tree // for range qs to mid build(qs, mid, ind << 1, arr); // Build the segment tree // for range mid+1 to qe build(mid + 1, qe, ind << 1 | 1, arr); // Merge the two child nodes // to obtain the parent node seg[ind] = task(seg[ind << 1], seg[ind << 1 | 1]); } // Query in a range qs to qe static Node query( int qs, int qe, int ns, int ne, int ind) { Node x = new Node(); x.l0 = x.r0 = -1; x.min0 = int .MaxValue; // If the range lies in this segment if (qs <= ns && qe >= ne) return seg[ind]; if (ne < qs || ns > qe || ns > ne) return x; // Else query for the right and left // child node of this subtree // and merge them int mid = (ns + ne) >> 1; Node l = query(qs, qe, ns, mid, ind << 1); Node r = query(qs, qe, mid + 1, ne, ind << 1 | 1); x = task(l, r); return x; } // Driver code public static void Main( string [] args) { for ( int i = 0; i < 100001; i++) { seg[i] = new Node(); } int [] arr = new int [] { 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 }; int n = arr.Length; // Build the segment tree build(0, n - 1, 1, arr); // Queries int [][] Q = new int [][] { new int [] { 3, 9 }, new int []{ 10, 13 } }; // Finding the answer for every query // and printing it for ( int i = 0; i < 2; i++) { Node ans = query(Q[i][0], Q[i][1], 0, n - 1, 1); Console.WriteLine(ans.min0); } } } |
Javascript
// JavaScript equivalent of the above code // Structure for each node // in the segment tree class Node { constructor() { this .l0 = 0; this .r0 = 0; this .min0 = 0; } } let seg = []; // Creating an array of nodes for (let i = 0; i < 100001; i++) { seg.push( new Node()); } // A utility function for // merging two nodes function task(l, r) { let x = new Node(); x.l0 = (l.l0 != -1) ? l.l0 : r.l0; x.r0 = (r.r0 != -1) ? r.r0 : l.r0; x.min0 = Math.min(l.min0, r.min0); // If both the nodes are valid if (l.r0 != -1 && r.l0 != -1) { // Computing the minimum distance to // store in the segment tree x.min0 = Math.min(x.min0, r.l0 - l.r0); } return x; } // A recursive function that constructs // Segment Tree for given string function build(qs, qe, ind, arr) { // If start is equal to end then // insert the array element if (qs == qe) { if (arr[qs] == 0) { seg[ind].l0 = seg[ind].r0 = qs; seg[ind].min0 = Number.MAX_SAFE_INTEGER; } else { seg[ind].l0 = seg[ind].r0 = -1; seg[ind].min0 = Number.MAX_SAFE_INTEGER; } return ; } let mid = Math.floor((qs + qe) / 2); // Build the segment tree // for range qs to mid build(qs, mid, ind * 2, arr); // Build the segment tree // for range mid+1 to qe build(mid + 1, qe, ind * 2 + 1, arr); // Merge the two child nodes // to obtain the parent node seg[ind] = task(seg[ind * 2], seg[ind * 2 + 1]); } // Query in a range qs to qe function query(qs, qe, ns, ne, ind) { let x = new Node(); x.l0 = x.r0 = -1; x.min0 = Number.MAX_SAFE_INTEGER; // If the range lies in this segment if (qs <= ns && qe >= ne) return seg[ind]; // If the range is out of the bounds // of this segment if (ne < qs || ns > qe || ns > ne) return x; // Else query for the right and left // child node of this subtree // and merge them let mid = Math.floor((ns + ne) / 2); let l = query(qs, qe, ns, mid, ind * 2); let r = query(qs, qe, mid + 1, ne, ind * 2 + 1); x = task(l, r); return x; } // Driver code let arr = [ 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 ]; let n = arr.length; // Build the segment tree build(0, n - 1, 1, arr); // Queries let Q = [ [ 3, 9 ], [ 10, 13 ] ]; for (let i = 0; i < 2; i++) { // Finding the answer for every query // and printing it let ans = query(Q[i][0], Q[i][1], 0, n - 1, 1); console.log(ans.min0); } |
Output:
2 3
Time Complexity: O(N * logN)
Auxiliary Space: O(N* logN)
Related Topic: Segment Tree
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!