Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIMaximize count of Decreasing Subsequences from the given Array

Maximize count of Decreasing Subsequences from the given Array

Given an array arr[], the task is to rearrange the array to generate maximum decreasing subsequences and print the count of the maximum number of subsequences possible such that each array element can be part of a single subsequence and the length of the subsequences needs to be maximized.

Example:

Input: arr[] = {5, 2, 3, 4} 
Output:
Explanation: 
The given array can be rearranged to {5, 4, 3, 2}.
Since every element is occurring only once, the rearranged array forms a decreasing subsequence of maximum possible length.

Input: arr[] = {5, 2, 6, 5, 2, 4, 5, 2} 
Output:
Explanation: 
The given array can be rearranged to {5, 2, 6, 5, 4, 2, 5, 2}.
The 3 decreasing subsequences of maximum possible length possible from the given array are {6, 5, 4, 2}, {5, 2} and {5, 2}

Approach: 
To solve the problem, there is no need to actually rearrange the given array. Since every element can be part of a single subsequence, the number of subsequences will be equal to the frequency of the most frequent element.
Follow the steps below to solve the problem:

  • Traverse the array and store the frequency of each array element in a Hashmap
  • Now, traverse the HashMap to find the maximum frequency of an element in an array.
  • Print the maximum frequency as the count of maximum decreasing subsequences possible.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count maximum subsequence
void Maximum_subsequence(int A[], int N)
{
    // Stores the frequency
    // of array elements
    unordered_map<int, int> frequency;
 
    // Stores max frequency
    int max_freq = 0;
 
    for (int i = 0; i < N; i++) {
 
        // Update frequency of A[i]
        frequency[A[i]]++;
    }
 
    for (auto it : frequency) {
 
        // Update max subsequence
        if (it.second > max_freq) {
            max_freq = it.second;
        }
    }
 
    // Print the count
    cout << max_freq << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 2, 6, 5, 2, 4, 5, 2 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    Maximum_subsequence(arr, N);
 
    return 0;
}


Java




// Java program for rearrange array
// to generate maximum decreasing
// subsequences
import java.util.HashMap;
import java.util.Map;
public class Main {
    // Function to count maximum subsequence
    public static void Maximum_subsequence(
        int[] A, int N)
    {
        // Stores the frequency
        // of array elements
        HashMap<Integer, Integer> frequency
            = new HashMap<>();
 
        // Stores maximum frequency
        int max_freq = 0;
 
        for (int i = 0; i < N; i++) {
 
            // Update frequency of A[i]
            if (frequency.containsKey(A[i])) {
                frequency.replace(A[i],
                                  frequency.get(A[i]) + 1);
            }
            else {
                frequency.put(A[i], 1);
            }
        }
 
        for (Map.Entry it : frequency.entrySet()) {
 
            // Update maximum subsequences
            if ((int)it.getValue() > max_freq) {
                max_freq = (int)it.getValue();
            }
        }
 
        // Print the result
        System.out.println(max_freq);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 5, 2, 6, 5, 2, 4, 5, 2 };
 
        int N = arr.length;
 
        Maximum_subsequence(arr, N);
    }
}


Python3




# Python3 program to implement
# the above approach
 
# Function to count maximum subsequence
def Maximum_subsequence(A, N):
 
    # Stores the frequency
    # of array elements
    frequency = dict();
 
    # Stores max frequency
    max_freq = 0;
 
    for i in range(N):
        if (A[i] in frequency):
            frequency[A[i]] += 1
        else:
            frequency[A[i]] = 1
     
    for it in frequency:
 
        # Update max subsequence
        if (frequency[it] > max_freq):
            max_freq = frequency[it];
         
    # Print the count
    print(max_freq);
 
# Driver Code
arr = [ 5, 2, 6, 5, 2, 4, 5, 2 ];
 
Maximum_subsequence(arr, len(arr));
 
# This code is contributed by grand_master


C#




// C# program for rearrange array
// to generate maximum decreasing
// subsequences
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to count maximum subsequence
public static void Maximum_subsequence(int[] A,
                                       int N)
{
     
    // Stores the frequency
    // of array elements
    Dictionary<int,
               int> frequency = new Dictionary<int,
                                               int>();
 
    // Stores maximum frequency
    int max_freq = 0;
 
    for(int i = 0; i < N; i++)
    {
         
        // Update frequency of A[i]
        if (frequency.ContainsKey(A[i]))
        {
            frequency[A[i]] = frequency[A[i]] + 1;
        }
        else
        {
            frequency.Add(A[i], 1);
        }
    }
 
    foreach(KeyValuePair<int,
                         int> it in frequency)
    {
         
        // Update maximum subsequences
        if ((int)it.Value > max_freq)
        {
            max_freq = (int)it.Value;
        }
    }
 
    // Print the result
    Console.WriteLine(max_freq);
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 5, 2, 6, 5, 2, 4, 5, 2 };
 
    int N = arr.Length;
 
    Maximum_subsequence(arr, N);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript Program to implement
// the above approach
 
// Function to count maximum subsequence
function Maximum_subsequence(A, N)
{
 
    // Stores the frequency
    // of array elements
    var frequency = new Map();
 
    // Stores max frequency
    var max_freq = 0;
    for (var i = 0; i < N; i++) {
 
        // Update frequency of A[i]
        if(frequency.has(A[i]))
            frequency.set(A[i], frequency.get(A[i])+1)
        else
            frequency.set(A[i], 1);
    }
 
    frequency.forEach((value, key) => {
     
        // Update max subsequence
        if (value > max_freq) {
            max_freq = value;
        }
    });
 
    // Print the count
    document.write( max_freq );
}
 
// Driver Code
var arr = [5, 2, 6, 5, 2, 4, 5, 2];
var N = arr.length;
Maximum_subsequence(arr, N);
 
// This code is contributed by itsok.
</script>


Output: 

3

Time Complexity: O(N), since one traversal of the array is required to complete all operations.
Auxiliary Space: O(N), an unordered map is used and in the worst case, all elements will be stored inside it.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments