Saturday, January 18, 2025
Google search engine
HomeData Modelling & AILargest number less than X having at most K set bits

Largest number less than X having at most K set bits

Given an integer X > 1 and an integer K > 0, the task is to find the greatest odd number < X such that the number of 1’s in its binary representation is at most K.

Examples: 

Input: X = 10, K = 2 
Output: 10

Input: X = 29, K = 2 
Output: 24 

Naive Approach: Starting from X – 1 check all the numbers below X which have at most K set bits, the first number satisfying the condition is the required answer.

Efficient Approach: is to count the set bits. If the count is less than or equal to K, return X. Otherwise, keep removing rightmost set bit while count – k does not become 0.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
 
// Function to return the greatest number <= X
// having at most K set bits.
int greatestKBits(int X, int K)
{
    int set_bit_count = __builtin_popcount(X);
    if (set_bit_count <= K)
        return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    int diff = set_bit_count - K;
    for (int i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
// Driver code
int main()
{
    int X = 21, K = 2;
    cout << greatestKBits(X, K);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
   
class GFG {
 
    // Function to return the greatest number <= X
    // having at most K set bits.
     int greatestKBits(int X, int K)
     {
       int set_bit_count = Integer.bitCount(X);
       if (set_bit_count <= K)
            return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
// Driver code
public static void main (String[] args)
{
    int X = 21, K = 2;
    GFG g=new GFG();
      System.out.print(g.greatestKBits(X, K));
}
 
//This code is contributed by Shivi_Aggarwal
}


Python3




# Python 3 implementation of the approach
 
# Function to return the greatest
# number <= X having at most K set bits.
def greatestKBits(X, K):
    set_bit_count = bin(X).count('1')
    if (set_bit_count <= K):
        return X
 
    # Remove rightmost set bits one
    # by one until we count becomes k
    diff = set_bit_count - K
    for i in range(0, diff, 1):
        X &= (X - 1)
 
    # Return the required number
    return X
 
# Driver code
if __name__ == '__main__':
    X = 21
    K = 2
    print(greatestKBits(X, K))
     
# This code is contributed by
# Shashank_Sharma


C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Function to return the greatest number <= X
    // having at most K set bits.
    static int greatestKBits(int X, int K)
    {
        int set_bit_count = countSetBits(X);
        if (set_bit_count <= K)
        return X;
 
        // Remove rightmost set bits one
        // by one until we count becomes k
        int diff = set_bit_count - K;
        for (int i = 0; i < diff; i++)
            X &= (X - 1);
 
        // Return the required number
        return X;
    }
 
    // Driver code
    public static void Main()
    {
        int X = 21, K = 2;
        Console.WriteLine(greatestKBits(X, K));
         
    }
}
 
// This code is contributed by Ryuga


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to get no of set
// bits in binary representation
// of positive integer n
function countSetBits( n)
{
    let count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
     
// Function to return the greatest number <= X
// having at most K set bits.
function greatestKBits( X, K)
{
    let set_bit_count = countSetBits(X);
    if (set_bit_count <= K)
    return X;
 
    // Remove rightmost set bits one
    // by one until we count becomes k
    let diff = set_bit_count - K;
    for (let i = 0; i < diff; i++)
        X &= (X - 1);
 
    // Return the required number
    return X;
}
 
 
// Driver Code
 
let X = 21, K = 2;
document.write(greatestKBits(X, K));
 
</script>


Output

20

Time Complexity: O(log2X), as the time complexity of __builtin_popcount(X) is O(log2X)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments