Sunday, January 19, 2025
Google search engine
HomeData Modelling & AIMinimum product subarray of size K including negative integers

Minimum product subarray of size K including negative integers

Given an array arr[] of length N, the task is to find the minimum product of subarray of size K of an array including negative integers.

Example:

Input: arr = [2, 3, -1, -5, 4, 0], K = 3
Output: -6 
Explanation: The product of the subarray {2, 3, -1} is -6 which is the minimum possible.

Input: arr = [-2, -4, 0, 1, 5, -6, 9], K =4
Output: -270
Explanation: The product of the subarray {1, 5, -6, 9} is -270 which is the minimum possible.

 

If the array consists of only positive numbers the problem can be efficiently solved using only the sliding window technique as discussed here.

Approach: The given problem can be solved using the two-pointers technique and the sliding window approach. Below steps can be followed to solve the problem:

  • Iterate the array arr till K – 1 and multiply every non-zero number to find the product and also count the number of zeros in the subarray.
  • Iterate the array arr from K till the end of the array and at every iteration:
    • If the current element is not a zero then multiply it to the product or else increment the count of zeros 
    • If the element to the left of the current sliding window is not a zero then divide the product by that element or else reduce the count of zeros
    • If the number of zeros in the sliding window is 0 then update the result with the current product or else update it with zero
  • Return the result res.

Below is the implementation of the above approach:

C++




// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// product of subarray of size K
int minProdK(vector<int>& arr, int K)
{
 
    // Initialize prod to 1
    // and zeros to 0
    int prod = 1, zeros = 0;
 
    // Initialize length of the array
    int N = arr.size();
 
    // Iterate the array arr till K - 1
    for (int i = 0; i < K; i++) {
 
        // If current element is 0
        // then increment zeros
        if (arr[i] == 0)
            zeros++;
 
        // Else multiply current
        // element to prod
        else
            prod *= arr[i];
    }
 
    // Initialize prod to 0 if zeros > 0
    // else to prod
    int res = zeros == 0 ? prod : 0;
 
    // Iterate the array arr
    // from K till the end
    for (int right = K; right < N; right++) {
 
        // If current element is 0
        // then increment zeros
        if (arr[right] == 0)
            zeros++;
 
        // Else multiply arr[right]
        // to prod
        else
            prod *= arr[right];
 
        // If leftmost element in
        // the sliding window is 0
        // then decrement zeros
        if (arr[right - K] == 0)
            zeros--;
 
        // Else divide prod by arr[right-K]
        else
            prod /= arr[right - K];
 
        // If zeros == 0 then update
        // res by taking minimum value
        // of res and prod
        if (zeros == 0)
            res = min(res, prod);
 
        // If zeros > 0 and res > 0
        // then initialize res to 0
        else if (res > 0)
            res = 0;
    }
 
    // Return the answer as res
    return res;
}
 
// Driver code
int main()
{
 
    // Initialize the array
    vector<int> arr = { 2, 3, -1, -5, 4, 0 };
 
    // Initialize the value of K
    int K = 3;
 
    // Call the function and
    // print the result
    cout << minProdK(arr, K);
 
    return 0;
}
 
    // This code is contributed by rakeshsahni


Java




// Java implementation for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to find the minimum
    // product of subarray of size K
    public static int minProdK(
        int arr[], int K)
    {
 
        // Initialize prod to 1
        // and zeros to 0
        int prod = 1, zeros = 0;
 
        // Initialize length of the array
        int N = arr.length;
 
        // Iterate the array arr till K - 1
        for (int i = 0; i < K; i++) {
 
            // If current element is 0
            // then increment zeros
            if (arr[i] == 0)
                zeros++;
 
            // Else multiply current
            // element to prod
            else
                prod *= arr[i];
        }
 
        // Initialize prod to 0 if zeros > 0
        // else to prod
        int res = zeros == 0 ? prod : 0;
 
        // Iterate the array arr
        // from K till the end
        for (int right = K; right < N; right++) {
 
            // If current element is 0
            // then increment zeros
            if (arr[right] == 0)
                zeros++;
 
            // Else multiply arr[right]
            // to prod
            else
                prod *= arr[right];
 
            // If leftmost element in
            // the sliding window is 0
            // then decrement zeros
            if (arr[right - K] == 0)
                zeros--;
 
            // Else divide prod by arr[right-K]
            else
                prod /= arr[right - K];
 
            // If zeros == 0 then update
            // res by taking minimum value
            // of res and prod
            if (zeros == 0)
                res = Math.min(res, prod);
 
            // If zeros > 0 and res > 0
            // then initialize res to 0
            else if (res > 0)
                res = 0;
        }
 
        // Return the answer as res
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Initialize the array
        int[] arr = { 2, 3, -1, -5, 4, 0 };
 
        // Initialize the value of K
        int K = 3;
 
        // Call the function and
        // print the result
        System.out.println(minProdK(arr, K));
    }
}


Python3




# Python 3 implementation for the above approach
 
# Function to find the minimum
# product of subarray of size K
def minProdK(arr, K):
 
    # Initialize prod to 1
    # and zeros to 0
    prod = 1
    zeros = 0
 
    # Initialize length of the array
    N = len(arr)
 
    # Iterate the array arr till K - 1
    for i in range(K):
        # If current element is 0
        # then increment zeros
        if (arr[i] == 0):
            zeros += 1
 
        # Else multiply current
        # element to prod
        else:
            prod *= arr[i]
 
    # Initialize prod to 0 if zeros > 0
    # else to prod
    if zeros == 0:
        res = prod
    else:
        res = 0
 
    # Iterate the array arr
    # from K till the end
    for right in range(K,  N):
       
        # If current element is 0
        # then increment zeros
        if (arr[right] == 0):
            zeros += 1
 
        # Else multiply arr[right]
        # to prod
        else:
            prod *= arr[right]
 
        # If leftmost element in
        # the sliding window is 0
        # then decrement zeros
        if (arr[right - K] == 0):
            zeros -= 1
 
        # Else divide prod by arr[right-K]
        else:
            prod //= arr[right - K]
 
        # If zeros == 0 then update
        # res by taking minimum value
        # of res and prod
        if (zeros == 0):
            res = min(res, prod)
 
        # If zeros > 0 and res > 0
        # then initialize res to 0
        elif (res > 0):
            res = 0
 
    # Return the answer as res
    return res
 
# Driver code
if __name__ == "__main__":
 
    # Initialize the array
    arr = [2, 3, -1, -5, 4, 0]
 
    # Initialize the value of K
    K = 3
 
    # Call the function and
    # print the result
    print(minProdK(arr, K))
 
    # This code is contributed by ukasp.


C#




// C# implementation for the above approach
using System;
class GFG
{
    // Function to find the minimum
    // product of subarray of size K
    public static int minProdK(
        int []arr, int K)
    {
 
        // Initialize prod to 1
        // and zeros to 0
        int prod = 1, zeros = 0;
 
        // Initialize length of the array
        int N = arr.Length;
 
        // Iterate the array arr till K - 1
        for (int i = 0; i < K; i++) {
 
            // If current element is 0
            // then increment zeros
            if (arr[i] == 0)
                zeros++;
 
            // Else multiply current
            // element to prod
            else
                prod *= arr[i];
        }
 
        // Initialize prod to 0 if zeros > 0
        // else to prod
        int res = zeros == 0 ? prod : 0;
 
        // Iterate the array arr
        // from K till the end
        for (int right = K; right < N; right++) {
 
            // If current element is 0
            // then increment zeros
            if (arr[right] == 0)
                zeros++;
 
            // Else multiply arr[right]
            // to prod
            else
                prod *= arr[right];
 
            // If leftmost element in
            // the sliding window is 0
            // then decrement zeros
            if (arr[right - K] == 0)
                zeros--;
 
            // Else divide prod by arr[right-K]
            else
                prod /= arr[right - K];
 
            // If zeros == 0 then update
            // res by taking minimum value
            // of res and prod
            if (zeros == 0)
                res = Math.Min(res, prod);
 
            // If zeros > 0 and res > 0
            // then initialize res to 0
            else if (res > 0)
                res = 0;
        }
 
        // Return the answer as res
        return res;
    }
 
    // Driver code
    public static void Main()
    {
 
        // Initialize the array
        int[] arr = { 2, 3, -1, -5, 4, 0 };
 
        // Initialize the value of K
        int K = 3;
 
        // Call the function and
        // print the result
        Console.Write(minProdK(arr, K));
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// Javascript implementation for the above approach
 
// Function to find the minimum
// product of subarray of size K
function minProdK(arr, K) {
 
    // Initialize prod to 1
    // and zeros to 0
    let prod = 1, zeros = 0;
 
    // Initialize length of the array
    let N = arr.length;
 
    // Iterate the array arr till K - 1
    for (let i = 0; i < K; i++) {
 
        // If current element is 0
        // then increment zeros
        if (arr[i] == 0)
            zeros++;
 
        // Else multiply current
        // element to prod
        else
            prod *= arr[i];
    }
 
    // Initialize prod to 0 if zeros > 0
    // else to prod
    let res = zeros == 0 ? prod : 0;
 
    // Iterate the array arr
    // from K till the end
    for (let right = K; right < N; right++) {
 
        // If current element is 0
        // then increment zeros
        if (arr[right] == 0)
            zeros++;
 
        // Else multiply arr[right]
        // to prod
        else
            prod *= arr[right];
 
        // If leftmost element in
        // the sliding window is 0
        // then decrement zeros
        if (arr[right - K] == 0)
            zeros--;
 
        // Else divide prod by arr[right-K]
        else
            prod /= arr[right - K];
 
        // If zeros == 0 then update
        // res by taking minimum value
        // of res and prod
        if (zeros == 0)
            res = Math.min(res, prod);
 
        // If zeros > 0 and res > 0
        // then initialize res to 0
        else if (res > 0)
            res = 0;
    }
 
    // Return the answer as res
    return res;
}
 
// Driver code
 
 
// Initialize the array
let arr = [2, 3, -1, -5, 4, 0];
 
// Initialize the value of K
let K = 3;
 
// Call the function and
// print the result
document.write(minProdK(arr, K));
 
// This code is contributed by Saurabh Jaiswal
</script>


Output

-6

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments