Monday, January 20, 2025
Google search engine
HomeData Modelling & AICheck if adding an edge makes the Undirected Graph cyclic or not

Check if adding an edge makes the Undirected Graph cyclic or not

Given an undirected graph, the task is to if adding an edge makes the graph cyclic or not.

In an Undirected graph, a cycle is a path of edges that connects a sequence of vertices back to itself. In other words, a cycle is a closed loop of edges that allows you to traverse the graph and return to the starting vertex.

For example:

    A — B
  /           \
C            D
  \          /
   E — F

In this graph, there are several cycles that can be formed by following different sequences of edges. For example, the sequence of edges A-B-D-F-E-C-A forms a cycle, as does the sequence    B-D-F-E-C-A-B.

Naive approach: The basic way to solve the problem is as follows:

Use depth-first Search to detect the cycle during the insertion of the nodes. If while traversing we reach a node that is already visited. This indicates that cycle is formed. 

Follow the steps below to solve the problem:

  • Create a detect cycle function that takes a graph and a new node as input.
  • Define a dfs function that takes a graph, a node, a set of visited nodes, and a search path array as input.
  • In the detectCycle function, initialize an empty set of visited nodes and an empty search path array.
  • Call the dfs function, starting from the new node, and passing the graph, visited nodes, and search path array as arguments.
  • Return the result of the dfs function.
  • In the dfs function, mark the current node as visited and add it to the search path array.
  • Check all the neighbors of the current node.
  • For each neighbor:
    • If the neighbor is already visited, check if it is in the current search path.
    • If it is, then we have found a cycle, so return true.
    • If it is not visited, continue the DFS from that node. If the DFS returns true, then return true as well.
  • Remove the current node from the search path array.
  • Return false.

Below is the implementation of the above approach:Recommended Practice

Please try your approach on IDE first, before moving on to the solution.

Try It!

C++




//C++ implementation for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to traversing over the graph
bool dfs(map<int, vector<int> > graph, int node,
         set<int> visited, vector<int> path)
{
    // Mark the current node as visited
    visited.insert(node);
    path.push_back(node);
 
    // Check if the node has any neighbors
    if (graph.count(node) > 0) {
        // Get the list of neighbors
        vector<int> neighbors = graph[node];
 
        // Check all the neighbors of the
        // current node
        for (int neighbor : neighbors) {
            if (visited.count(neighbor) > 0) {
                // If the neighbor is already
                // visited, check if it is
                // in the current search path
                if (std::find(path.begin(), path.end(),
                              neighbor)
                    != path.end()) {
                    // If it is, then we have
                    // found a cycle
                    return true;
                }
            }
            else {
                // If the neighbor is not
                // visited, continue the DFS
                // from that node
                if (dfs(graph, neighbor, visited, path)) {
                    return true;
                }
            }
        }
    }
 
    // Remove the current node from
    // the search path
    path.pop_back();
 
    return false;
}
// Function to detect cycle is formed
// by adding an edge
bool detectCycle(map<int, vector<int> > graph, int newNode)
{
    // Perform a DFS starting from the
    // new node
    set<int> visited;
    vector<int> path;
    bool cycleExists = dfs(graph, newNode, visited, path);
 
    // Return true, if cycle formed
    return cycleExists;
}
 
int main()
{
    // Test the detectCycle function
    map<int, vector<int> > graph;
    graph[1] = { 2, 3 };
    graph[2] = { 1, 3 };
    graph[3] = { 1, 2 };
 
    // Function call
    if (detectCycle(graph, 4)) {
        cout << "true" << endl;
    }
    else {
        cout << "false" << endl;
    }
 
    // Add a new node to the graph
    // that creates a cycle
    graph[4] = { 1 };
 
    if (detectCycle(graph, 4)) {
        cout << "true" << endl;
    }
    else {
        cout << "false" << endl;
    }
 
    return 0;
}
//This code is contributed by Potta Lokesh


Java




// Java implementation of the above approach
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
 
public class GraphCycleDetector {
 
      // Function to detect cycle is formed
      // by adding an edge
    public static boolean
    detectCycle(Map<Integer, List<Integer> > graph,
                int newNode)
    {
       
        // Perform a DFS starting from the
          // new node
        Set<Integer> visited = new HashSet<>();
        List<Integer> path = new ArrayList<>();
        boolean cycleExists
            = dfs(graph, newNode, visited, path);
         
          // Return true, if cycle formed
        return cycleExists;
       
    }
     
   
      // Function to traversing over the graph
    private static boolean
    dfs(Map<Integer, List<Integer> > graph, int node,
        Set<Integer> visited, List<Integer> path)
    {
       
        // Mark the current node as visited
        visited.add(node);
        path.add(node);
 
        // Check if the node has any neighbors
        if (graph.containsKey(node)) {
           
            // Get the list of neighbors
            List<Integer> neighbors = graph.get(node);
 
            // Check all the neighbors of the
              // current node
            for (int neighbor : neighbors) {
               
                if (visited.contains(neighbor)) {
                   
                    // If the neighbor is already
                    // visited, check if it is
                    // in the current search path
                    if (path.contains(neighbor)) {
                       
                        // If it is, then we have
                        // found a cycle
                        return true;
                    }
                }
                else {
                    // If the neighbor is not
                    // visited, continue the DFS
                      // from that node
                    if (dfs(graph, neighbor, visited,
                            path)) {
                        return true;
                    }
                }
            }
        }
 
        // Remove the current node from
          // the search path
        path.remove(path.size() - 1);
 
        return false;
    }
     
      // Driver code
    public static void main(String[] args)
    {
        // Test the detectCycle function
        Map<Integer, List<Integer> > graph
            = new HashMap<>();
        graph.put(1, Arrays.asList(2, 3));
        graph.put(2, Arrays.asList(1, 3));
        graph.put(3, Arrays.asList(1, 2));
     
          // Function call
        System.out.println(
            detectCycle(graph, 4));
 
        // Add a new node to the graph
          // that creates a cycle
        graph.put(4, Arrays.asList(1));
 
        System.out.println(
            detectCycle(graph, 4));
    }
}


Python3




# Python3 implementation of the above approach
from collections import defaultdict
 
# Function to traversing over the graph
def dfs(graph, node, visited, path):
    # Mark the current node as visited
    visited.add(node)
    path.append(node)
 
    # Check if the node has any neighbors
    if node in graph:
        # Get the list of neighbors
        neighbors = graph[node]
 
        # Check all the neighbors of the
        # current node
        for neighbor in neighbors:
            if neighbor in visited:
                # If the neighbor is already
                # visited, check if it is
                # in the current search path
                if neighbor in path:
                    # If it is, then we have
                    # found a cycle
                    return True
            else:
                # If the neighbor is not
                # visited, continue the DFS
                # from that node
                if dfs(graph, neighbor, visited, path):
                    return True
 
    # Remove the current node from
    # the search path
    path.pop()
 
    return False
 
# Function to detect cycle is formed
# by adding an edge
def detect_cycle(graph, new_node):
    # Perform a DFS starting from the
    # new node
    visited = set()
    path = []
    cycle_exists = dfs(graph, new_node, visited, path)
 
    # Return true, if cycle formed
    return cycle_exists
 
# Test the detect_cycle function
graph = defaultdict(list)
graph[1] = [2, 3]
graph[2] = [1, 3]
graph[3] = [1, 2]
 
# Function call
if detect_cycle(graph, 4):
    print("true")
else:
    print("false")
 
# Add a new node to the graph
# that creates a cycle
graph[4] = [1]
 
if detect_cycle(graph, 4):
    print("true")
else:
    print("false")
     
    # This code is contributed by poojaagarwal2.


Javascript




function detectCycle(graph, newNode) {
  // Perform a DFS starting from the new node
  let visited = new Set()
  let path = []
  let cycleExists = dfs(graph, newNode, visited, path)
 
  return cycleExists
}
 
function dfs(graph, node, visited, path) {
  // Mark the current node as visited
  visited.add(node)
  path.push(node)
 
  // Check if the node has any neighbors
  if (graph[node]) {
    // Convert the neighbors to an array if necessary
    let neighbors = Array.isArray(graph[node]) ? graph[node] : [graph[node]]
 
    // Check all the neighbors of the current node
    for (let neighbor of neighbors) {
      if (visited.has(neighbor)) {
        // If the neighbor is already visited, check if it is in the current search path
        if (path.includes(neighbor)) {
          // If it is, then we have found a cycle
          return true
        }
      } else {
        // If the neighbor is not visited, continue the DFS from that node
        if (dfs(graph, neighbor, visited, path)) {
          return true
        }
      }
    }
  }
 
  // Remove the current node from the search path
  path.pop()
 
  return false
}
// Test the detectCycle function
let graph = {
  1: [2, 3],
  2: [1, 3],
  3: [1, 2],
}
 
console.log(detectCycle(graph, 4)) // should print false
 
// Add a new node to the graph that creates a cycle
graph[4] = [1]
 
console.log(detectCycle(graph, 4)) // should print true


C#




// C# code implementation for the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to detect cycle is formed by adding an edge
  public static bool
    DetectCycle(Dictionary<int, List<int> > graph,
                int newNode)
  {
    // Perform a DFS starting from the new node
    var visited = new HashSet<int>();
    var path = new List<int>();
    var cycleExists
      = Dfs(graph, newNode, visited, path);
 
    // Return true, if cycle formed
    return cycleExists;
  }
 
  // Function to traversing over the graph
  private static bool
    Dfs(Dictionary<int, List<int> > graph, int node,
        HashSet<int> visited, List<int> path)
  {
    // Mark the current node as visited
    visited.Add(node);
    path.Add(node);
 
    // Check if the node has any neighbors
    if (graph.ContainsKey(node)) {
      // Get the list of neighbors
      var neighbors = graph[node];
 
      // Check all the neighbors of the current node
      foreach(var neighbor in neighbors)
      {
        if (visited.Contains(neighbor)) {
          // If the neighbor is already visited,
          // check if it is in the current search
          // path
          if (path.Contains(neighbor)) {
            // If it is, then we have found a
            // cycle
            return true;
          }
        }
        else {
          // If the neighbor is not visited,
          // continue the DFS from that node
          if (Dfs(graph, neighbor, visited,
                  path)) {
            return true;
          }
        }
      }
    }
 
    // Remove the current node from the search path
    path.RemoveAt(path.Count - 1);
 
    return false;
  }
 
  static public void Main()
  {
 
    // Code
    // Test the DetectCycle function
    var graph = new Dictionary<int, List<int> >{
      { 1, new List<int>{ 2, 3 } },
      { 2, new List<int>{ 1, 3 } },
      { 3, new List<int>{ 1, 2 } }
    };
 
    // Function call
    Console.WriteLine(DetectCycle(graph, 4));
 
    // Add a new node to the graph that creates a cycle
    graph.Add(4, new List<int>{ 1 });
 
    Console.WriteLine(DetectCycle(graph, 4));
  }
}
 
// This code is contributed by sankar.


Output

false
true

Time complexity:  O(V+E), where V is the number of vertices (or nodes) in the graph, and E is the number of edges in the graph.
Auxiliary Space:  O(V)

Efficient Approach: The above approach can be optimized based on the following idea:

  • The approach used in the above code is a union-find-based approach to detect cycles in the graph. 
  • The find() method is used to find the root of the tree representing a given node, and 
  • the addEdge() method uses the find() method to find the roots of the trees representing the two nodes being connected by the edge. 
  • If the roots are the same, it means that the two nodes are already in the same connected component, and adding the edge would create a cycle in the graph. 
  • If the roots are different, the addEdge() method merges the two connected components by attaching the root of the smaller tree to the root of the larger tree.

Below is the implementation of the above approach:

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
class Graph {
    private:
        int V; // Number of vertices in the graph
        vector<vector<int> > adj; // Vector of vectors to store the adjacency list of each vertex
        int *parent; // Array to store the parent of each vertex in the disjoint set
        int *rank; // Array to store the rank of each vertex in the disjoint set
 
    public:
        Graph(int V) {
            this->V = V; // Set the number of vertices in the graph
            adj.resize(V); // Resize the adjacency list to accommodate V vertices
            parent = new int[V]; // Allocate memory for the parent array
            rank = new int[V]; // Allocate memory for the rank array
            for (int i = 0; i < V; i++) {
                parent[i] = i; // Set the initial parent of each vertex to itself
                rank[i] = 0; // Set the initial rank of each vertex to 0
            }
        }
 
        bool addEdge(int u, int v) {
            int rootU = find(u); // Find the root of the disjoint set containing vertex u
            int rootV = find(v); // Find the root of the disjoint set containing vertex v
            if (rootU == rootV) { // If u and v are already in the same disjoint set, there is no need to add the edge
                return false; // Return false to indicate that the edge was not added
            }
            if (rank[rootU] < rank[rootV]) { // If the rank of the disjoint set containing u is less than the rank of the disjoint set containing v
                parent[rootU] = rootV; // Make v the parent of u
            }
            else if (rank[rootU] > rank[rootV]) { // If the rank of the disjoint set containing u is greater than the rank of the disjoint set containing v
                parent[rootV] = rootU; // Make u the parent of v
            }
            else { // If the rank of the disjoint set containing u is equal to the rank of the disjoint set containing v
                parent[rootV] = rootU; // Make u the parent of v
                rank[rootU]++; // Increment the rank of the disjoint set containing u
            }
            adj[u].push_back(v); // Add v to the adjacency list of u
            adj[v].push_back(u); // Add u to the adjacency list of v
            return true; // Return true to indicate that the edge was added
        }
 
        int find(int u) {
            if (parent[u] != u) { // If the parent of u is not u, i.e., u is not the root of its disjoint set
                parent[u] = find(parent[u]); // Recursively find the root of the disjoint set containing u and update the parent of u to point directly to the root
            }
            return parent[u]; // Return the root of the disjoint set containing u
        }
};
 
// driver code
// Create a graph with 4 vertices
int main() {
    Graph graph(4);
    graph.addEdge(0, 1);
    graph.addEdge(0, 2);
    graph.addEdge(1, 2);
    if (graph.addEdge(2, 3)) {
        cout << "false" << endl;
    }
    else {
        cout << "true" << endl;
    }
    if (graph.addEdge(3, 0)) {
        cout << "false" << endl;
    }
    else {
        cout << "true" << endl;
    }
    return 0;
}
// this code is contributed by devendrasalunke


Java




// Java Implementation of the above approach
import java.io.*;
import java.util.ArrayList;
import java.util.List;
 
public class Graph {
    private final int V;
    private final List<List<Integer> > adj;
    private final int[] parent;
    private final int[] rank;
 
    // Function to create Graph
    public Graph(int V)
    {
 
        this.V = V;
        adj = new ArrayList<>(V);
        for (int i = 0; i < V; i++) {
            adj.add(new ArrayList<>());
        }
        parent = new int[V];
        rank = new int[V];
        for (int i = 0; i < V; i++) {
            parent[i] = i;
            rank[i] = 0;
        }
    }
 
    // Function to add edge in graph
    public boolean addEdge(int u, int v)
    {
        // Find the roots of the trees
        // representing u and v
        int rootU = find(u);
        int rootV = find(v);
        if (rootU == rootV) {
            // If the roots are the same,
            // then u and v are already in the
            // same connected component, so
            // adding the edge (u, v) would create a cycle
            return false;
        }
        // If the roots are different, merge
        // the two connected components by
        // attaching the root of the smaller tree
        // to the root of the larger tree
        if (rank[rootU] < rank[rootV]) {
 
            parent[rootU] = rootV;
        }
        else if (rank[rootU] > rank[rootV]) {
            parent[rootV] = rootU;
        }
        else {
            parent[rootV] = rootU;
            rank[rootU]++;
        }
        // Add the edge (u, v) to the adjacency
        // list
        adj.get(u).add(v);
        adj.get(v).add(u);
        return true;
    }
 
    private int find(int u)
    {
        // Find the root of the tree
        // representing u
        if (parent[u] != u) {
 
            parent[u] = find(parent[u]);
        }
        return parent[u];
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        Graph graph = new Graph(4);
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(1, 2);
        // graph.addEdge(2, 3);
 
        if (graph.addEdge(2, 3)) {
            // adding edge(2,3) would not
              // create a cycle
            System.out.println("false");
        }
        else {
            // adding edge (2, 3) would
              // create a cycle
            System.out.println("true");
        }
 
        if (graph.addEdge(3, 0)) {
            // adding edge(3,0) would not
              // create a cycle
            System.out.println("false");
        }
        else {
            // adding edge (3, 0) would
              // create a cycle
            System.out.println("true");
        }
    }
}


Python3




class Graph:
    def __init__(self, V):
        self.V = # Number of vertices in the graph
        # List of lists to store the adjacency list of each vertex
        self.adj = [[] for _ in range(V)]
        # List to store the parent of each vertex in the disjoint set
        self.parent = list(range(V))
        # List to store the rank of each vertex in the disjoint set
        self.rank = [0] * V
 
    def addEdge(self, u, v):
        # Find the root of the disjoint set containing vertex u
        rootU = self.find(u)
        # Find the root of the disjoint set containing vertex v
        rootV = self.find(v)
        if rootU == rootV:  # If u and v are already in the same disjoint set, there is no need to add the edge
            return False  # Return False to indicate that the edge was not added
        # If the rank of the disjoint set containing u is less than the rank of the disjoint set containing v
        if self.rank[rootU] < self.rank[rootV]:
            self.parent[rootU] = rootV  # Make v the parent of u
        # If the rank of the disjoint set containing u is greater than the rank of the disjoint set containing v
        elif self.rank[rootU] > self.rank[rootV]:
            self.parent[rootV] = rootU  # Make u the parent of v
        else# If the rank of the disjoint set containing u is equal to the rank of the disjoint set containing v
            self.parent[rootV] = rootU  # Make u the parent of v
            # Increment the rank of the disjoint set containing u
            self.rank[rootU] += 1
        self.adj[u].append(v)  # Add v to the adjacency list of u
        self.adj[v].append(u)  # Add u to the adjacency list of v
        return True  # Return True to indicate that the edge was added
 
    def find(self, u):
        # If the parent of u is not u, i.e., u is not the root of its disjoint set
        if self.parent[u] != u:
            # Recursively find the root of the disjoint set containing u and update the parent of u to point directly to the root
            self.parent[u] = self.find(self.parent[u])
        # Return the root of the disjoint set containing u
        return self.parent[u]
 
 
# driver code
# Create a graph with 4 vertices
if __name__ == '__main__':
    graph = Graph(4)
    graph.addEdge(0, 1)
    graph.addEdge(0, 2)
    graph.addEdge(1, 2)
    if graph.addEdge(2, 3):
        print("false")
    else:
        print("true")
    if graph.addEdge(3, 0):
        print("false")
    else:
        print("true")


Javascript




// Define a class called Graph
class Graph {
    // Constructor takes in number of vertices and initializes necessary properties
    constructor(V) {
        // Store the number of vertices
        this.V = V;
        // Create an array of arrays to store the adjacency list
        this.adj = new Array(V);
        // Initialize each adjacency list to be empty
        for (let i = 0; i < V; i++) {
            this.adj[i] = [];
        }
        // Initialize the parent array for each vertex to be itself
        this.parent = new Array(V);
        for (let i = 0; i < V; i++) {
            this.parent[i] = i;
        }
        // Initialize the rank array for each vertex to be 0
        this.rank = new Array(V);
        for (let i = 0; i < V; i++) {
            this.rank[i] = 0;
        }
    }
 
    // Method to add an undirected edge between two vertices
    addEdge(u, v) {
        // Find the root of the set that u belongs to
        let rootU = this.find(u);
        // Find the root of the set that v belongs to
        let rootV = this.find(v);
        // If both vertices belong to the same set, then adding an edge between them will create a cycle
        if (rootU === rootV) {
            // Return false to indicate that the edge was not added
            return false;
        }
        // If the rank of the set that u belongs to is smaller than the rank of the set that v belongs to
        if (this.rank[rootU] < this.rank[rootV]) {
            // Set the parent of u's root to be v's root
            this.parent[rootU] = rootV;
        }
        // If the rank of the set that v belongs to is smaller than the rank of the set that u belongs to
        else if (this.rank[rootU] > this.rank[rootV]) {
            // Set the parent of v's root to be u's root
            this.parent[rootV] = rootU;
        }
        // If the ranks of the sets that u and v belong to are the same
        else {
            // Set the parent of v's root to be u's root
            this.parent[rootV] = rootU;
            // Increment the rank of the set that u belongs to by 1
            this.rank[rootU]++;
        }
        // Add v to u's adjacency list
        this.adj[u].push(v);
        // Add u to v's adjacency list
        this.adj[v].push(u);
        // Return true to indicate that the edge was added
        return true;
    }
 
    // Method to find the root of the set that a vertex belongs to
    find(u) {
        // If the parent of u is not itself (i.e. u is not the root of its set)
        if (this.parent[u] !== u) {
            // Recursively find the root of the set that u belongs to
            this.parent[u] = this.find(this.parent[u]);
        }
        // Return the root of the set that u belongs to
        return this.parent[u];
    }
}
 
// Create a new graph with 4 vertices
let graph = new Graph(4);
// Add edges between vertices
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
 
// Try to add an edge between vertices that already belong to the same set
if (graph.addEdge(2, 3)) {
    console.log("false");
}
else {
    console.log("true");
}
 
if (graph.addEdge(3, 0)) {
    console.log("false");
}
else {
    console.log("true");
}


C#




// C# Implementation of the above approach
 
using System;
using System.Collections.Generic;
 
public class Graph {
 
    private List<List<int> > adj;
    private int[] parent;
    private int[] rank;
 
    // Function to create Graph
    public Graph(int V)
    {
 
        adj = new List<List<int> >(V);
        for (int i = 0; i < V; i++) {
            adj.Add(new List<int>());
        }
        parent = new int[V];
        rank = new int[V];
        for (int i = 0; i < V; i++) {
            parent[i] = i;
            rank[i] = 0;
        }
    }
 
    // Function to add edge in graph
    public bool AddEdge(int u, int v)
    {
        // Find the roots of the trees representing u and v
        int rootU = Find(u);
        int rootV = Find(v);
        if (rootU == rootV) {
            // If the roots are the same, then u and v are
            // already in the same connected component, so
            // adding the edge (u, v) would create a cycle
            return false;
        }
        // If the roots are different, merge the two
        // connected components by attaching the root of the
        // smaller tree to the root of the larger tree
        if (rank[rootU] < rank[rootV]) {
 
            parent[rootU] = rootV;
        }
        else if (rank[rootU] > rank[rootV]) {
            parent[rootV] = rootU;
        }
        else {
            parent[rootV] = rootU;
            rank[rootU]++;
        }
        // Add the edge (u, v) to the adjacency list
        adj[u].Add(v);
        adj[v].Add(u);
        return true;
    }
 
    private int Find(int u)
    {
        // Find the root of the tree representing u
        if (parent[u] != u) {
 
            parent[u] = Find(parent[u]);
        }
        return parent[u];
    }
 
    static public void Main()
    {
 
        // Code
        Graph graph = new Graph(4);
        graph.AddEdge(0, 1);
        graph.AddEdge(0, 2);
        graph.AddEdge(1, 2);
        // graph.AddEdge(2, 3);
 
        if (graph.AddEdge(2, 3)) {
            // adding edge(2,3) would not create a cycle
            Console.WriteLine("false");
        }
        else {
            // adding edge (2, 3) would create a cycle
            Console.WriteLine("true");
        }
 
        if (graph.AddEdge(3, 0)) {
            // adding edge(3,0) would not create a cycle
            Console.WriteLine("false");
        }
        else {
            // adding edge (3, 0) would create a cycle
            Console.WriteLine("true");
        }
    }
}
 
// This code is contributed by karthik.


Output

false
true

Time complexity: O(E log V)
Auxiliary Space: O(V)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments