Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AIPrint ways to obtain given sum by repeated throws of a dice

Print ways to obtain given sum by repeated throws of a dice

Given an integer N, the task is to print the ways to get the sum N by repeatedly throwing a dice.

Input: N = 3
Output: 
1 1 1
1 2
2 1
3
Explanation: The standard dice has 6 faces i.e, {1, 2, 3, 4, 5, 6}. Therefore the ways of getting sum 3 after repeatedly throwing a dice are as follows:
1 + 1 + 1 = 3
1 + 2 = 3
2 + 1 = 3
3 = 3

Input: N = 2
Output: 
1 1
2

Approach: This problem can be solved by using Recursion and Backtracking. The idea is to iterate for every possible value of dice i in the range [1, 6] and recursively call for the remaining sum i.e, (N – i) and keep appending the value of the current dice value in a data structure like strings. If the required sum is zero, print the elements in the stored string.

Below is the implementation of the above approach

C++




// C++ program of the above approach
#include <iostream>
using namespace std;
 
// Recursive function to print the
// number of ways to get the sum
// N with repeated throw of a dice
void printWays(int n, string ans)
{
    // Base Case
    if (n == 0) {
 
        // Print characters in
        // the string
        for (auto x : ans) {
            cout << x << " ";
        }
        cout << endl;
        return;
    }
 
    // If n is less than zero,
    // no sum is possible
    else if (n < 0) {
        return;
    }
 
    // Loop to iterate over all
    // the possible current moves
    for (int i = 1; i <= 6; i++) {
 
        // Recursive call for the
        // remaining sum considering
        // i as the current integer
        printWays(n - i, ans + to_string(i));
    }
}
 
// Driver Code
int main()
{
    int N = 3;
    printWays(N, "");
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
public class GFG {
     
// Recursive function to print the
// number of ways to get the sum
// N with repeated throw of a dice
static void printWays(int n, String ans)
{
   
    // Base Case
    if (n == 0) {
 
        // Print characters in
        // the string
        for (int i = 0; i < ans.length(); i++) {
            System.out.print(ans.charAt(i) + " ");
        }
        System.out.println();
        return;
    }
 
    // If n is less than zero,
    // no sum is possible
    else if (n < 0) {
        return;
    }
 
    // Loop to iterate over all
    // the possible current moves
    for (int i = 1; i <= 6; i++) {
 
        // Recursive call for the
        // remaining sum considering
        // i as the current integer
        printWays(n - i, ans + Integer.toString(i));
    }
}
 
// Driver Code
public static void main(String args[])
{
    int N = 3;
    printWays(N, "");
 
}
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code for the above approach
 
# Recursive function to print the
# number of ways to get the sum
# N with repeated throw of a dice
def printWays(n, ans):
 
    # Base Case
    if n == 0:
 
        # Print characters in
        # the string
        for x in range(len(ans)):
            print(ans[x], end=" ")
        print("")
        return
 
    # If n is less than zero,
    # no sum is possible
    elif n < 0:
        return
 
    # Loop to iterate over all
    # the possible current moves
    for i in range(1, 7):
 
        # Recursive call for the
        # remaining sum considering
        # i as the current integer
        printWays(n - i, ans + str(i))
 
# Driver Code
N = 3
printWays(N, "")
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
using System.Collections;
 
class GFG {
 
  // Recursive function to print the
  // number of ways to get the sum
  // N with repeated throw of a dice
  static void printWays(int n, string ans)
  {
 
    // Base Case
    if (n == 0) {
 
      // Print characters in
      // the string
      for (int i = 0; i < ans.Length; i++) {
        Console.Write(ans[i] + " ");
      }
      Console.WriteLine();
      return;
    }
 
    // If n is less than zero,
    // no sum is possible
    else if (n < 0) {
      return;
    }
 
    // Loop to iterate over all
    // the possible current moves
    for (int i = 1; i <= 6; i++) {
 
      // Recursive call for the
      // remaining sum considering
      // i as the current integer
      printWays(n - i, ans + i.ToString());
    }
  }
 
  // Driver Code
  public static void Main()
  {
    int N = 3;
    printWays(N, "");
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
      // JavaScript code for the above approach
 
      // Recursive function to print the
      // number of ways to get the sum
      // N with repeated throw of a dice
      function printWays(n, ans)
      {
       
          // Base Case
          if (n == 0) {
 
              // Print characters in
              // the string
              for (let x = 0; x < ans.length; x++) {
                  document.write(ans[x] + " ");
              }
              document.write('<br>')
              return;
          }
 
          // If n is less than zero,
          // no sum is possible
          else if (n < 0) {
              return;
          }
 
          // Loop to iterate over all
          // the possible current moves
          for (let i = 1; i <= 6; i++) {
 
              // Recursive call for the
              // remaining sum considering
              // i as the current integer
              printWays(n - i, ans + (i).toString());
          }
      }
 
      // Driver Code
      let N = 3;
      printWays(N, "");
 
// This code is contributed by Potta Lokesh
  </script>


Output

1 1 1 
1 2 
2 1 
3 

Time Complexity: O(6N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments