Thursday, January 23, 2025
Google search engine
HomeData Modelling & AICount of pairs of integers whose difference of squares is equal to...

Count of pairs of integers whose difference of squares is equal to N

Given a positive integer N, the task is to find the count of pairs of integers (x, y) whose difference of squares is equal to N, i.e., 

x^{2} - y^{2} = N
 

Examples: 

Input: N = 20 
Output:
Explanation: 
The 4 possible pairs are (10, 2), (-10, 2), (-10, -2) and (10, -2).

Input: N = 80 
Output: 12 
Explanation: 
The 12 possible pairs are: 
1. (40, 2), (-40, 2), (-40, -2) and (40, -2). 
2. (20, 4), (-20, 4), (-20, -4) and (20, -4). 
3. (10, 8), (-10, 8), (-10, -8) and (10, -8). 
 

Approach: 
The given equation can also be written as:  

=> x^{2} - y^{2} = N
=> (x + y)*(x - y) = N      

Now for an integral solution of the given equation:  

(x+y)(x-y) 

is always an integer 
=> (x+y)(x-y) 
 are divisors of N 
  

Let  (x + y) = p1 and (x + y) = p2 
be the two equations where p1 & p2 are the divisors of N 
such that p1 * p2 = N.

Solving for the above two equations we have:  

=> x = \frac{(p1 + p2)}{2}
and y = \frac{(p1 - p2)}{2}

From the above calculations, for x and y to be integral, then the sum of divisors must be even. Since there are 4 possible values for two values of x and y as (+x, +y), (+x, -y), (-x, +y) and (-x, -y)
Therefore the total number of possible solutions is given by 4*(count pairs of divisors with even sum).

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the integral
// solutions of the given equation
void findSolutions(int N)
{
 
    // Initialise count to 0
    int count = 0;
 
    // Iterate till sqrt(N)
    for (int i = 1; i <= sqrt(N); i++) {
 
        if (N % i == 0) {
 
            // If divisor's pair sum is even
            if ((i + N / i) % 2 == 0) {
                count++;
            }
        }
    }
 
    // Print the total possible solutions
    cout << 4 * count << endl;
}
 
// Driver Code
int main()
{
    // Given number N
    int N = 80;
 
    // Function Call
    findSolutions(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to find the integral
// solutions of the given equation
static void findSolutions(int N)
{
 
    // Initialise count to 0
    int count = 0;
 
    // Iterate till sqrt(N)
    for(int i = 1; i <= Math.sqrt(N); i++)
    {
       if (N % i == 0)
       {
            
           // If divisor's pair sum is even
           if ((i + N / i) % 2 == 0)
           {
               count++;
           }
       }
    }
     
    // Print the total possible solutions
    System.out.print(4 * count);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given number N
    int N = 80;
     
    // Function Call
    findSolutions(N);
}
}
 
// This code is contributed by Shubham Prakash.


Python3




# Python3 program for the above approach
import math;
 
# Function to find the integral
# solutions of the given equation
def findSolutions(N):
 
    # Initialise count to 0
    count = 0;
 
    # Iterate till sqrt(N)
    for i in range(1, int(math.sqrt(N)) + 1):
 
        if (N % i == 0):
 
            # If divisor's pair sum is even
            if ((i + N // i) % 2 == 0):
                count += 1;
             
    # Print the total possible solutions
    print(4 * count);
 
# Driver Code
 
# Given number N
N = 80;
 
# Function Call
findSolutions(N);
 
# This code is contributed by Code_Mech


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the integral
// solutions of the given equation
static void findSolutions(int N)
{
 
    // Initialise count to 0
    int count = 0;
 
    // Iterate till sqrt(N)
    for(int i = 1; i <= Math.Sqrt(N); i++)
    {
        if (N % i == 0)
        {
                 
            // If divisor's pair sum is even
            if ((i + N / i) % 2 == 0)
            {
                count++;
            }
        }
    }
     
    // Print the total possible solutions
    Console.Write(4 * count);
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given number N
    int N = 80;
     
    // Function Call
    findSolutions(N);
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the integral
// solutions of the given equation
function findSolutions(N)
{
     
    // Initialise count to 0
    let count = 0;
 
    // Iterate till sqrt(N)
    for(let i = 1; i <= Math.sqrt(N); i++)
    {
        if (N % i == 0)
        {
             
            // If divisor's pair sum is even
            if ((i + parseInt(N / i)) % 2 == 0)
            {
                count++;
            }
        }
    }
     
    // Print the total possible solutions
    document.write(4 * count + "<br>");
}
 
// Driver Code
 
// Given number N
let N = 80;
 
// Function Call
findSolutions(N);
 
// This code is contributed by souravmahato348
 
</script>


Output: 
12
 

Time Complexity: O(sqrt(N))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments