Thursday, January 23, 2025
Google search engine
HomeData Modelling & AICount of ways to split N into Triplets forming a Triangle

Count of ways to split N into Triplets forming a Triangle

Given an integer N, the task is to find the number of ways to split N into ordered triplets which can together form a triangle.

Examples:

Input: N = 15 
Output: Total number of triangles possible are 28

Input: N = 9 
Output: Total number of triangles possible is 10 
 

Approach: The following observation needs to be made in order to solve the problem: 

If N is split into 3 integers a, b and c, then the following conditions need to be satisfied for a, b and c to form a triangle: 

  • a + b > c
     
  • a + c > b
     
  • b + c > a

Therefore, iterate over the range [1, N] using nested loops to generate triplets, and for each triplet check if it forms a triangle or not. 

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// required number of ways
int Numberofways(int n)
{
    int count = 0;
 
    for (int a = 1; a < n; a++) {
 
        for (int b = 1; b < n; b++) {
 
            int c = n - (a + b);
 
            // Check if a, b and c can
            // form a triangle
            if (a + b > c && a + c > b
                && b + c > a) {
                count++;
            }
        }
    }
 
    // Return number of ways
    return count;
}
 
// Driver Code
int main()
{
    int n = 15;
 
    cout << Numberofways(n) << endl;
 
    return 0;
}


Java




// Java Program to implement
// the above approach
import java.io.*;
 
class GFG {
 
    // Function to return the
    // required number of ways
    static int Numberofways(int n)
    {
        int count = 0;
 
        for (int a = 1; a < n; a++) {
 
            for (int b = 0; b < n; b++) {
 
                int c = n - (a + b);
 
                // Check if a, b, c can
                // form a triangle
                if (a + b > c && a + c > b
                    && b + c > a) {
                    count++;
                }
            }
        }
 
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 15;
 
        System.out.println(Numberofways(n));
    }
}


Python3




# Python Program to implement
# the above approach
 
# Function to return the
# required number of ways
def Numberofways(n):
    count = 0
    for a in range(1, n):
        for b in range(1, n):
 
            c = n - (a + b)
 
            # Check if a, b, c can form a triangle
            if(a < b + c and b < a + c and c < a + b):
                count += 1
 
    return count
 
 
# Driver code
n = 15
print(Numberofways(n))


C#




// C# Program to implement
// the above approach
 
using System;
 
class GFG {
 
    // Function to return the
    // required number of ways
    static int Numberofways(int n)
    {
        int count = 0;
        for (int a = 1; a < n; a++) {
            for (int b = 1; b < n; b++) {
                int c = n - (a + b);
 
                // Check if a, b, c can form
                // a triangle or not
                if (a + b > c && a + c > b
                    && b + c > a) {
                    count++;
                }
            }
        }
 
        // Return number of ways
        return count;
    }
 
    // Driver Code
    static public void Main()
    {
        int n = 15;
 
        Console.WriteLine(Numberofways(n));
    }
}


Javascript




<script>
// Javascript Program to implement
// the above approach
 
// Function to return the
// required number of ways
function Numberofways(n)
{
    var count = 0;
 
    for (var a = 1; a < n; a++)
    {
        for (var b = 1; b < n; b++)
        {
            var c = n - (a + b);
 
            // Check if a, b and c can
            // form a triangle
            if (a + b > c && a + c > b
                && b + c > a)
            {
                count++;
            }
        }
    }
 
    // Return number of ways
    return count;
}
 
// Driver Code
var n = 15;
document.write( Numberofways(n));
 
// This code is contributed by noob2000.
</script>


Output: 

28

 

Time Complexity: O(N2
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments