Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIFind ancestors of each node in the given Graph

Find ancestors of each node in the given Graph

Given a graph in the form of an edge list and a directed graph, return all the ancestors of the nodes in any order. An ancestor is a node one step ahead in the hierarchy on the same path reachable to the current node. 

Note: The graph has no cycle.

Examples:

Input: N = 5, Edges[][2] = {{0, 4}, {4, 1}, {4, 3}, {1, 2}}
Output: Result[N][] = {{}, {0, 4}, {0, 1, 4}, {0, 4}, {0}}
Explanation:

Pictorial representation og example 1

As the graph shows the that there are no ancestors to node 0 hence the value of Result[0][] = {} and for the rest of the nodes all the ancestors are given in their respective indices sorted in ascending order.

Input: N = 7, Edges[][2] = {{0, 1}, {0, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {4, 3}, {4, 5}, {6, 3}, {6, 5}}
Output: Result[N][] = {{}, {0}, {0}, {0, 1, 2, 4, 6}, {0, 1, 2}, {0, 1, 2, 4, 6}, {}}

Approach: To solve the problem follow the below idea:

The idea is to store the edges in the adjacency list such that the direction of the edges is reversed. Then perform DFS from all nodes until we exhaust the DFS, and all the nodes visited for a particular node will be its ancestors as all the edges are reversed.

  • Reverse the edges and store them in the adjacency list adj.
  • For each node from 0 to n – 1, call DFS and store all the nodes into the vector reached by the DFS.
  • Store this resultant vector into a 2D vector.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Visited array to keep visited marker
// for DFS traversal
vector<bool> vis;
 
// Function to perform DFS
// Traversal on the given graph
void DFS(int u, vector<vector<int> > adj)
{
    vis[u] = 1;
    for (int v : adj[u]) {
        if (vis[v] == 0)
            DFS(v, adj);
    }
}
 
// Function to print the array
void printResult(vector<vector<int> > res)
{
    for (int i = 0; i < res.size(); i++) {
        cout << i << " -> ";
        for (int j : res[i]) {
            cout << j << " ";
        }
        cout << "\n";
    }
}
 
void solve(int n, vector<vector<int> > edges)
{
 
    // Create an adjancency list with
    // edges reversed
    vector<vector<int> > adj(n);
 
    for (int i = 0; i < edges.size(); i++) {
        int u = edges[i][0], v = edges[i][1];
        adj[v].push_back(u);
    }
 
    // Resultant vector where for each
    // index i from 0 to n-1 the resultant
    // sorted ancestors vector for ith
    // index will be stored
    vector<vector<int> > res(n);
    vector<int> arr;
 
    for (int i = 0; i < n; i++) {
 
        // Assign 0 to vis array
        vis.assign(n, 0);
 
        // Call DFS for the ith node
        DFS(i, adj);
        arr.clear();
 
        for (int j = 0; j < n; j++) {
 
            // All the ancestors for node i
            // will be visited after DFS call
 
            if (vis[j] && i != j) {
                arr.push_back(j);
            }
        }
 
        // Store the resultant arr in the
        // corresponding index
        res[i] = arr;
    }
 
    printResult(res);
}
 
// Drivers code
int main()
{
    int N = 5;
    vector<vector<int> > Edges
        = { { 0, 4 }, { 4, 1 }, { 4, 3 }, { 1, 2 } };
 
    // Function Call
    solve(N, Edges);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
  // Visited array to keep visited marker for DFS traversal
  static List<Boolean> vis;
 
  // Function to perform DFS Traversal on the given graph
  static void DFS(int u, List<List<Integer>> adj) {
    vis.set(u, true);
    for (int v : adj.get(u)) {
      if (!vis.get(v))
        DFS(v, adj);
    }
  }
 
  // Function to print the array
  static void printResult(List<List<Integer>> res) {
    for (int i = 0; i < res.size(); i++) {
      System.out.print(i + " -> ");
      for (int j : res.get(i)) {
        System.out.print(j + " ");
      }
      System.out.println();
    }
  }
 
  static void solve(int n, List<List<Integer>> edges) {
    // Create an adjacency list with edges reversed
    List<List<Integer>> adj = new ArrayList<>();
    for (int i = 0; i < n; i++) {
      adj.add(new ArrayList<>());
    }
 
    for (List<Integer> edge : edges) {
      int u = edge.get(0), v = edge.get(1);
      adj.get(v).add(u);
    }
 
    // Resultant vector where for each index i from 0 to n-1
    // the resultant sorted ancestors vector for ith index will be stored
    List<List<Integer>> res = new ArrayList<>();
    for (int i = 0; i < n; i++) {
      // Assign false to vis array
      vis = new ArrayList<>(Arrays.asList(new Boolean[n]));
      Collections.fill(vis, false);
 
      // Call DFS for the ith node
      DFS(i, adj);
 
      List<Integer> arr = new ArrayList<>();
      for (int j = 0; j < n; j++) {
        // All the ancestors for node i will be visited after DFS call
        if (vis.get(j) && i != j) {
          arr.add(j);
        }
      }
 
      // Store the resultant arr in the corresponding index
      res.add(arr);
    }
 
    printResult(res);
  }
 
  // Drivers code
  public static void main(String[] args) {
    int n = 5;
    List<List<Integer>> edges = new ArrayList<>();
    edges.add(Arrays.asList(0, 4));
    edges.add(Arrays.asList(4, 1));
    edges.add(Arrays.asList(4, 3));
    edges.add(Arrays.asList(1, 2));
 
    // Function Call
    solve(n, edges);
  }
}


Python3




# Python program for the above approach
 
# Visited array to keep visited marker
# for DFS traversal
vis = []
 
# Function to perform DFS
# Traversal on the given graph
def DFS(u, adj):
    vis[u] = True
    for v in adj[u]:
        if not vis[v]:
            DFS(v, adj)
 
# Function to print the array
def printResult(res):
    for i in range(len(res)):
        print(i, "->", end=" ")
        for j in res[i]:
            print(j, end=" ")
        print()
 
def solve(n, edges):
 
    # Create an adjancency list with
    # edges reversed
    adj = [[] for i in range(n)]
 
    for i in range(len(edges)):
        u, v = edges[i][0], edges[i][1]
        adj[v].append(u)
 
    # Resultant vector where for each
    # index i from 0 to n-1 the resultant
    # sorted ancestors vector for ith
    # index will be stored
    res = [[] for i in range(n)]
 
    for i in range(n):
 
        # Assign False to vis array
        vis.clear()
        vis.extend([False] * n)
 
        # Call DFS for the ith node
        DFS(i, adj)
        arr = []
 
        for j in range(n):
 
            # All the ancestors for node i
            # will be visited after DFS call
 
            if vis[j] and i != j:
                arr.append(j)
 
        # Store the resultant arr in the
        # corresponding index
        res[i] = arr
 
    printResult(res)
 
# Drivers code
if __name__ == "__main__":
    N = 5
    Edges = [[0, 4], [4, 1], [4, 3], [1, 2]]
 
    # Function Call
    solve(N, Edges)
 
# This code is contributed by Susobhan Akhuli


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
  // Visited array to keep visited marker
  // for DFS traversal
  static List<bool> vis;
 
  // Function to perform DFS
  // Traversal on the given graph
  static void DFS(int u, List<List<int> > adj)
  {
    vis[u] = true;
    foreach(int v in adj[u])
    {
      if (!vis[v]) {
        DFS(v, adj);
      }
    }
  }
 
  // Function to print the array
  static void printResult(List<List<int> > res)
  {
    for (int i = 0; i < res.Count; i++) {
      Console.Write("{0} -> ", i);
      foreach(int j in res[i])
      {
        Console.Write("{0} ", j);
      }
      Console.WriteLine();
    }
  }
 
  static void solve(int n, List<List<int> > edges)
  {
 
    // Create an adjancency list with
    // edges reversed
    List<List<int> > adj = new List<List<int> >(n);
    for (int i = 0; i < n; i++) {
      adj.Add(new List<int>());
    }
    foreach(List<int> edge in edges)
    {
      int u = edge[0], v = edge[1];
      adj[v].Add(u);
    }
 
    // Resultant List where for each
    // index i from 0 to n-1 the resultant
    // sorted ancestors list for ith
    // index will be stored
    List<List<int> > res = new List<List<int> >(n);
    vis = new List<bool>(n);
    for (int i = 0; i < n; i++) {
      vis.Clear();
      vis.AddRange(new bool[n]);
 
      // Call DFS for the ith node
      DFS(i, adj);
      List<int> arr = new List<int>();
      for (int j = 0; j < n; j++) {
 
        // All the ancestors for node i
        // will be visited after DFS call
        if (vis[j] && i != j) {
          arr.Add(j);
        }
      }
 
      // Store the resultant arr in the
      // corresponding index
      res.Add(arr);
    }
    printResult(res);
  }
 
  // Drivers code
  static public void Main()
  {
    int n = 5;
    List<List<int> > edges = new List<List<int> >() {
      new List<int>() { 0, 4 },
      new List<int>() { 4, 1 },
      new List<int>() { 4, 3 },
      new List<int>() { 1, 2 }
    };
 
    // Function Call
    solve(n, edges);
  }
}
 
// This code is contributed by Prasad Kandekar(prasad264)


Javascript




// JavaScript program for the above approach
 
// Visited array to keep visited marker
// for DFS traversal
let vis = [];
 
// Function to perform DFS
// Traversal on the given graph
function DFS(u, adj) {
    vis[u] = true;
    for (let v of adj[u]) {
        if (!vis[v]) {
            DFS(v, adj);
        }
    }
}
 
// Function to print the array
function printResult(res) {
    for (let i = 0; i < res.length; i++) {
        console.log(i + " -> " + res[i].join(" "));
    }
}
 
function solve(n, edges) {
 
    // Create an adjancency list with
    // edges reversed
    let adj = new Array(n).fill(null).map(() => []);
 
    for (let i = 0; i < edges.length; i++) {
        let u = edges[i][0], v = edges[i][1];
        adj[v].push(u);
    }
 
    // Resultant vector where for each
    // index i from 0 to n-1 the resultant
    // sorted ancestors vector for ith
    // index will be stored
    let res = new Array(n).fill(null).map(() => []);
    let arr = [];
 
    for (let i = 0; i < n; i++) {
 
        // Assign false to vis array
        vis = new Array(n).fill(false);
 
        // Call DFS for the ith node
        DFS(i, adj);
        arr = [];
 
        for (let j = 0; j < n; j++) {
 
            // All the ancestors for node i
            // will be visited after DFS call
 
            if (vis[j] && i !== j) {
                arr.push(j);
            }
        }
 
        // Store the resultant arr in the
        // corresponding index
        res[i] = arr;
    }
 
    printResult(res);
}
 
// Drivers code
let N = 5;
let Edges = [ [ 0, 4 ], [ 4, 1 ], [ 4, 3 ], [ 1, 2 ] ];
 
// Function Call
solve(N, Edges);


Output

0 -> 
1 -> 0 4 
2 -> 0 1 4 
3 -> 0 4 
4 -> 0 

Time Complexity: O(V2)
Auxiliary Space: O(|V| + |E|)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments