Monday, January 13, 2025
Google search engine
HomeData Modelling & AICheck if a number can be expressed as a product of exactly...

Check if a number can be expressed as a product of exactly K prime divisors

Given an integer N, the task is to check if it can be expressed as a product of exactly K prime divisors. 
Examples:
 

Input: N = 12, K = 3
Output: Yes
Explanation:
12 can be expressed as product of 2×2×3.

Input: N = 14, K = 3
Output:  No
Explanation:
14 can be only expressed as product of 2×7.

 

Approach:
To solve the problem mentioned above we are given the value N and we will find the maximum number of values we can split N into. We can represent prime factorization of N as \prod_{i=1}^{K} {p_{i}}^{a_{i}}     where pi are the prime factors of N and ai are the exponents. We know that total number of divisors of N is \prod_{i=1}^{K} (a_{i}+1)     . Therefore, we can observe that we have to check whether it is possible to represent N as product of K numbers or not. If the maximum split is less than K then it is not possible to express it in exactly K prime divisors, else it is always possible.
 

C++




// CPP implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
 
#include <bits/stdc++.h>
using namespace std;
 
// function to find K prime divisors
void KPrimeDivisors(int N, int K)
{
    int maximum_split = 0;
 
    // count number of 2s that divide N
    while (N % 2 == 0) {
        maximum_split++;
        N /= 2;
    }
 
    // N must be odd at this point.
    // So we can skip one element
    for (int i = 3; i * i <= N; i = i + 2) {
 
        while (N % i == 0) {
            // divide the value of N
            N = N / i;
 
            // increment count
            maximum_split++;
        }
    }
 
    // Condition to handle the case when n
    // is a prime number greater than 2
    if (N > 2)
        maximum_split++;
 
    // check if maximum_split is less than K
    // then it not possible
    if (maximum_split < K) {
        printf("No\n");
        return;
    }
 
    printf("Yes\n");
}
 
/* Driver code */
int main()
{
    // initialise N and K
    int N = 12;
    int K = 3;
 
    KPrimeDivisors(N, K);
 
    return 0;
}


Java




// Java implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
class GFG {
     
    // function to find K prime divisors
    static void KPrimeDivisors(int N, int K)
    {
        int maximum_split = 0;
     
        // count number of 2s that divide N
        while (N % 2 == 0) {
            maximum_split++;
            N /= 2;
        }
     
        // N must be odd at this point.
        // So we can skip one element
        for (int i = 3; i * i <= N; i = i + 2) {
     
            while (N % i == 0) {
                // divide the value of N
                N = N / i;
     
                // increment count
                maximum_split++;
            }
        }
     
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
     
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K) {
            System.out.println("No");
            return;
        }
     
        System.out.println("Yes");
    }
     
    /* Driver code */
    public static void main (String[] args)
    {
        // initialise N and K
        int N = 12;
        int K = 3;
     
        KPrimeDivisors(N, K);
    }
}
 
// This code is contributed by Yash_R


Python3




# Python implementation to Check if a
# number can be expressed as a
# product of exactly K prime divisors
 
import math as mt
 
# function to find K prime divisors
def KPrimeDivisors(n, k):
     
    # To count maximum split of N
    maximum_split = 0
     
    # count number of 2s that divide N
    while n % 2 == 0:
        maximum_split+= 1
        n = n // 2
         
    # n must be odd at this point
    # so we skip one element
    for i in range(3, mt.ceil(mt.sqrt(n)), 2):
        while n % i == 0:
            n = n / i;
            maximum_split+= 1
             
    # Condition to handle the case when n
    # is a prime number greater than 2
    if n > 2:
        maximum_split+= 1
         
    # check if maximum_split is less than K
    # then it not possible
    if maximum_split < k:
        print("No")
        return
 
    print("Yes")
         
     
 
# Driver code
N = 12
K = 3
KPrimeDivisors(N, K)


C#




// C# implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors
using System;
 
class GFG {
      
    // function to find K prime divisors
    static void KPrimeDivisors(int N, int K)
    {
        int maximum_split = 0;
      
        // count number of 2s that divide N
        while (N % 2 == 0) {
            maximum_split++;
            N /= 2;
        }
      
        // N must be odd at this point.
        // So we can skip one element
        for (int i = 3; i * i <= N; i = i + 2) {
      
            while (N % i == 0) {
 
                // divide the value of N
                N = N / i;
      
                // increment count
                maximum_split++;
            }
        }
      
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
      
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K) {
            Console.WriteLine("No");
            return;
        }
      
        Console.WriteLine("Yes");
    }
      
    /* Driver code */
    public static void Main(String[] args)
    {
        // initialise N and K
        int N = 12;
        int K = 3;
      
        KPrimeDivisors(N, K);
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// javascript implementation to Check if a
// number can be expressed as a
// product of exactly K prime divisors    
 
// function to find K prime divisors
    function KPrimeDivisors(N , K)
    {
        var maximum_split = 0;
 
        // count number of 2s that divide N
        while (N % 2 == 0)
        {
            maximum_split++;
            N /= 2;
        }
 
        // N must be odd at this point.
        // So we can skip one element
        for (i = 3; i * i <= N; i = i + 2)
        {
 
            while (N % i == 0)
            {
             
                // divide the value of N
                N = N / i;
 
                // increment count
                maximum_split++;
            }
        }
 
        // Condition to handle the case when n
        // is a prime number greater than 2
        if (N > 2)
            maximum_split++;
 
        // check if maximum_split is less than K
        // then it not possible
        if (maximum_split < K)
        {
            document.write("No");
            return;
        }
 
        document.write("Yes");
    }
 
    /* Driver code */
     
        // initialise N and K
        var N = 12;
        var K = 3;
        KPrimeDivisors(N, K);
 
// This code is contributed by gauravrajput1.
</script>


Output: 

Yes

 

Time Complexity: O(sqrt(N))

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments