Sunday, January 12, 2025
Google search engine
HomeData Modelling & AITriple Order Traversal of a Binary Tree

Triple Order Traversal of a Binary Tree

Given a Binary Tree, the task is to find it’s Triple Order Traversal.  

Triple Order Traversal is a tree traversal technique in which every node is traversed thrice in the following order:  

  • Visit the root node
  • Traverse the left subtree
  • Visit the root node
  • Traverse the right subtree
  • Visit the root node.

Examples:

Input:
            A
           / \
          B   C
         / \   \
        F   D   E
       
Output: A B F F F B D D D B A C C E E E C A

Input:
            A
           / \
          B   C
         / \   
        E   D   
       /
      F
Output: A B E F F F E E B D D D B A C C C A 

Approach: 
Follow the steps below to solve the problem:  

  • Start the traversal from the root.
  • If the current node does not exist, simply return from it.
  • Otherwise:
    • Print the value of the current node.
    • Recursively traverse the left subtree.
    • Again, print the current node.
    • Recursively traverse the right subtree.
    • Again, print the current node.
  • Repeat the above steps until all nodes in the tree are visited.

Below is the implementation of the above approach: 

C++




// C++ Program to implement triple
// order traversal of a binary tree
#include <iostream>
using namespace std;
 
// Structure of a Node
struct node {
    char data;
    struct node *left, *right;
};
 
// Function to create new node
struct node* newNode(char ch)
{
    // Allocating a new node in the memory.
    struct node* Node = new node();
    Node->data = ch;
    Node->left = NULL;
    Node->right = NULL;
    return Node;
}
 
// Function to print Triple Order traversal
void tripleOrderTraversal(struct node* root)
{
    if (root) {
 
        // Print the current node
        cout << root->data << " ";
 
        // Traverse left subtree
        tripleOrderTraversal(root->left);
 
        // Print the current node
        cout << root->data << " ";
 
        // Traverse right subtree
        tripleOrderTraversal(root->right);
 
        // Print the current node
        cout << root->data << " ";
    }
}
 
// Driver Code
int main()
{
    struct node* root = newNode('A');
    root->left = newNode('B');
    root->right = newNode('C');
    root->left->left = newNode('F');
    root->left->right = newNode('D');
    root->right->right = newNode('E');
 
    tripleOrderTraversal(root);
}


Java




// Java program to implement triple
// order traversal of a binary tree
import java.util.*;
 
class GFG{
 
// Structure of a Node
static class node
{
    char data;
    node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
         
        // Print the current node
        System.out.print(root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        System.out.print(root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        System.out.print(root.data + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
 
    tripleOrderTraversal(root);
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 program to implement triple
# order traversal of a binary tree
 
# Structure of node
class Node:
     
    # Initialise the node
    def __init__(self, ch):
         
        self.data = ch
        self.left = None
        self.right = None
         
# Function to print the Triple Order Traversal
def tripleOrderTraversal(root):
     
    if root:
         
        # Print the current node
        print(root.data, end = ' ')
         
        # Print the left subtree
        tripleOrderTraversal(root.left)
         
        # Print the current node
        print(root.data, end = ' ')
         
        # Print the right subtree
        tripleOrderTraversal(root.right)
         
        # Print the current node
        print(root.data, end = ' ')
         
# Driver code
root = Node('A')
root.left = Node('B')
root.right = Node('C')
root.left.left = Node('F')
root.left.right = Node('D')
root.right.right = Node('E')
 
tripleOrderTraversal(root)
     
# This code is contributed by Stuti Pathak


C#




// C# program to implement triple
// order traversal of a binary tree
using System;
 
class GFG{
 
// Structure of a Node
public class node
{
    public char data;
    public node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocating a new node in the memory.
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
static void tripleOrderTraversal(node root)
{
    if (root != null)
    {
         
        // Print the current node
        Console.Write(root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        Console.Write(root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        Console.Write(root.data + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newNode('A');
    root.left = newNode('B');
    root.right = newNode('C');
    root.left.left = newNode('F');
    root.left.right = newNode('D');
    root.right.right = newNode('E');
 
    tripleOrderTraversal(root);
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// javascript Program to implement triple
// order traversal of a binary tree
 
// Structure of a Node
class node {
 
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create new node
function newNode(ch)
{
    // Allocating a new node in the memory.
    var n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Triple Order traversal
function tripleOrderTraversal(root)
{
    if (root) {
 
        // Print the current node
        document.write( root.data + " ");
 
        // Traverse left subtree
        tripleOrderTraversal(root.left);
 
        // Print the current node
        document.write( root.data + " ");
 
        // Traverse right subtree
        tripleOrderTraversal(root.right);
 
        // Print the current node
        document.write( root.data + " ");
    }
}
 
// Driver Code
var root = newNode('A');
root.left = newNode('B');
root.right = newNode('C');
root.left.left = newNode('F');
root.left.right = newNode('D');
root.right.right = newNode('E');
tripleOrderTraversal(root);
 
 
</script>


Output: 

A B F F F B D D D B A C C E E E C A

 

Time Complexity: O(N), where N is the total number of nodes in the binary tree. 
Auxiliary Space: O(N)
Applications: Euler tour of a tree is a modified version of triple order traversal.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments