Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount numbers which can be represented as sum of same parity primes

Count numbers which can be represented as sum of same parity primes

Given an arr[] of positive integers you have to count how many numbers can be represented as sum of same parity prime numbers(can be same)

Examples:  

Input : arr[] = {1, 3, 4, 6}
Output : 2
Explanation: 4 = 2+2, 6 = 3+3

Input : arr[] = {4, 98, 0, 36, 51}
Output : 3

1. If two numbers of same parity are added then they would be always even, so all odd numbers in the array can never contribute to answer. 
2. Talking about 0 and 2 both cannot be represented by sum of same parity prime numbers. 
3. Rest of all numbers will contribute to the answer (Refer https://www.neveropen.co.uk/program-for-goldbachs-conjecture-two-primes-with-given-sum/)

So, we have to just iterate over the entire array and find out number of even elements not equal to 0 and 2.  

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate count
int calculate(int* array, int size)
{
    int count = 0;
 
    for (int i = 0; i < size; i++)
        if (array[i] % 2 == 0 &&
            array[i] != 0 &&
            array[i] != 2)
            count++;
     
    return count;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 3, 4, 6 };
    int size = sizeof(a) / sizeof(a[0]);
    cout << calculate(a, size);
}


Java




// Java program to Count numbers
// which can be represented as
// sum of same parity primes
import java.util.*;
 
class GFG
{
// Function to calculate count
public static int calculate(int ar[],
                            int size)
{
    int count = 0;
     
    for (int i = 0; i < size; i++)
        if (ar[i] % 2 == 0 &&
            ar[i] != 0 &&
            ar[i] != 2)
            count++;
     
    return count;
}
 
// Driver code
public static void main (String[] args)
{
    int a[] = { 1, 3, 4, 6 };
    int size = a.length;
    System.out.print(calculate(a, size));
}
}
 
// This code is contributed
// by ankita_saini


Python3




# Function to calculate count
def calculate(array, size):
 
    count = 0
 
    for i in range(size):
        if (array[i] % 2 == 0 and
            array[i] != 0 and
            array[i] != 2 ):
            count += 1
 
    return count
 
# Driver Code
if __name__ == "__main__":
    a = [ 1, 3, 4, 6 ]
    size = len(a)
    print(calculate(a, size))
 
# This code is contributed
# by ChitraNayal


C#




// C# program to Count numbers
// which can be represented as
// sum of same parity primes
using System;
 
class GFG
{
// Function to calculate count
public static int calculate(int []ar,
                            int size)
{
    int count = 0;
     
    for (int i = 0; i < size; i++)
        if (ar[i] % 2 == 0 &&
            ar[i] != 0 &&
            ar[i] != 2)
            count++;
     
    return count;
}
 
// Driver code
static public void Main (String []args)
{
    int []a = { 1, 3, 4, 6 };
    int size = a.Length;
    Console.WriteLine(calculate(a, size));
}
}
 
// This code is contributed
// by Arnab Kundu


PHP




<?php
// Function to calculate count
function calculate(&$array, $size)
{
    $count = 0;
 
    for ($i = 0; $i < $size; $i++)
        if ($array[$i] % 2 == 0 &&
            $array[$i] != 0 &&
            $array[$i] != 2)
            $count++;
     
    return $count;
}
 
// Driver Code
$a = array(1, 3, 4, 6 );
$size = sizeof($a);
echo calculate($a, $size);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// Javascript program to Count numbers
// which can be represented as
// sum of same parity primes
 
// Function to calculate count
function calculate(ar, size)
{
    var count = 0;
     
    for(i = 0; i < size; i++)
        if (ar[i] % 2 == 0 &&
            ar[i] != 0 && ar[i] != 2)
            count++;
 
    return count;
}
 
// Driver code
var a = [ 1, 3, 4, 6 ];
var size = a.length;
 
document.write(calculate(a, size));
 
// This code is contributed by todaysgaurav
 
</script>


Output: 

2

 

Time complexity: O(n) where n is the size of the given array
Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments