Sort the given biotonic doubly linked list. A biotonic doubly linked list is a doubly-linked list which is first increasing and then decreasing. A strictly increasing or a strictly decreasing list is also a biotonic doubly linked list.
Examples:
Input : 2 5 7 12 10 6 4 1 Output : 1 2 4 5 6 7 10 12 Input : 20 17 14 8 3 Output : 3 8 14 17 20
In the previous post, we split the biotonic doubly linked list, reverse the second half and then merge both halves. In this post, another alternative method is discussed. The idea is to maintain two pointers, one pointing to head element initially and other pointing to the last element of a doubly linked list. Compare both the elements and add the smaller element to result in a list. The advance pointer of that element to the next adjacent element. Repeat this until all elements of input doubly linked list are added to result in the list.
Below is the implementation of above algorithm:
C++
// C++ implementation to sort the biotonic // doubly linked list #include <bits/stdc++.h> using namespace std; // structure of node of the doubly linked list struct Node { int data; struct Node* next; struct Node* prev; }; // function to sort a biotonic doubly linked list struct Node* sort( struct Node* head) { // If number of elements are less than or // equal to 1 then return. if (head == NULL || head->next == NULL) { return head; } // Pointer to first element of doubly // linked list. Node* front = head; // Pointer to last element of doubly // linked list. Node* last = head; // Dummy node to which resultant // sorted list is added. Node* res = new Node; // Node after which next element // of sorted list is added. Node* resEnd = res; // Node to store next element to // which pointer is moved after // element pointed by that pointer // is added to result list. Node* next; // Find last element of input list. while (last->next != NULL) { last = last->next; } // Compare first and last element // until both pointers are not equal. while (front != last) { // If last element data is less than // or equal to front element data, // then add last element to // result list and change the // last pointer to its previous // element. if (last->data <= front->data) { resEnd->next = last; next = last->prev; last->prev->next = NULL; last->prev = resEnd; last = next; resEnd = resEnd->next; } // If front element is smaller, then // add it to result list and change // front pointer to its next element. else { resEnd->next = front; next = front->next; front->next = NULL; front->prev = resEnd; front = next; resEnd = resEnd->next; } } // Add the single element left to the // result list. resEnd->next = front; front->prev = resEnd; // The head of required sorted list is // next to dummy node res. return res->next; } // Function to insert a node at the beginning // of the Doubly Linked List void push( struct Node** head_ref, int new_data) { // allocate node struct Node* new_node = ( struct Node*) malloc ( sizeof ( struct Node)); // put in the data new_node->data = new_data; // since we are adding at the beginning, // prev is always NULL new_node->prev = NULL; // link the old list of the new node new_node->next = (*head_ref); // change prev of head node to new node if ((*head_ref) != NULL) (*head_ref)->prev = new_node; // move the head to point to the new node (*head_ref) = new_node; } // Function to print nodes in a given doubly // linked list void printList( struct Node* head) { // if list is empty if (head == NULL) cout << "Doubly Linked list empty" ; while (head != NULL) { cout << head->data << " " ; head = head->next; } } // Driver program to test above int main() { struct Node* head = NULL; // Create the doubly linked list: // 2<->5<->7<->12<->10<->6<->4<->1 push(&head, 1); push(&head, 4); push(&head, 6); push(&head, 10); push(&head, 12); push(&head, 7); push(&head, 5); push(&head, 2); cout << "Original Doubly linked list:\n" ; printList(head); // sort the biotonic DLL head = sort(head); cout << "\nDoubly linked list after sorting:\n" ; printList(head); return 0; } |
Java
// Java implementation to sort the biotonic // doubly linked list class GFG { // structure of node of the doubly linked list static class Node { int data; Node next; Node prev; }; // function to sort a biotonic doubly linked list static Node sort(Node head) { // If number of elements are less than or // equal to 1 then return. if (head == null || head.next == null ) { return head; } // Pointer to first element of doubly // linked list. Node front = head; // Pointer to last element of doubly // linked list. Node last = head; // Dummy node to which resultant // sorted list is added. Node res = new Node(); // Node after which next element // of sorted list is added. Node resEnd = res; // Node to store next element to // which pointer is moved after // element pointed by that pointer // is added to result list. Node next; // Find last element of input list. while (last.next != null ) { last = last.next; } // Compare first and last element // until both pointers are not equal. while (front != last) { // If last element data is less than // or equal to front element data, // then add last element to // result list and change the // last pointer to its previous // element. if (last.data <= front.data) { resEnd.next = last; next = last.prev; last.prev.next = null ; last.prev = resEnd; last = next; resEnd = resEnd.next; } // If front element is smaller, then // add it to result list and change // front pointer to its next element. else { resEnd.next = front; next = front.next; front.next = null ; front.prev = resEnd; front = next; resEnd = resEnd.next; } } // Add the single element left to the // result list. resEnd.next = front; front.prev = resEnd; // The head of required sorted list is // next to dummy node res. return res.next; } // Function to insert a node at the beginning // of the Doubly Linked List static Node push(Node head_ref, int new_data) { // allocate node Node new_node = new Node(); // put in the data new_node.data = new_data; // since we are adding at the beginning, // prev is always null new_node.prev = null ; // link the old list of the new node new_node.next = (head_ref); // change prev of head node to new node if ((head_ref) != null ) (head_ref).prev = new_node; // move the head to point to the new node (head_ref) = new_node; return head_ref; } // Function to print nodes in a given doubly // linked list static void printList(Node head) { // if list is empty if (head == null ) System.out.print( "Doubly Linked list empty" ); while (head != null ) { System.out.print( head.data + " " ); head = head.next; } } // Driver code public static void main(String args[]) { Node head = null ; // Create the doubly linked list: // 2<.5<.7<.12<.10<.6<.4<.1 head = push(head, 1 ); head = push(head, 4 ); head = push(head, 6 ); head = push(head, 10 ); head = push(head, 12 ); head = push(head, 7 ); head = push(head, 5 ); head = push(head, 2 ); System.out.print( "Original Doubly linked list:\n" ); printList(head); // sort the biotonic DLL head = sort(head); System.out.print( "\nDoubly linked list after sorting:\n" ); printList(head); } } // This code is contributed by Arnab Kundu |
Python3
# Python3 implementation to sort # the biotonic doubly linked list # structure of node of the doubly linked list class Node: def __init__( self , data): self .data = data self .prev = None self . next = None # function to sort a biotonic doubly linked list def sort(head): # If number of elements are less # than or equal to 1 then return. if head = = None or head. next = = None : return head # Pointer to first element # of doubly linked list. front = head # Pointer to last element # of doubly linked list. last = head # Dummy node to which resultant # sorted list is added. res = Node( None ) # Node after which next element # of sorted list is added. resEnd = res # Find last element of input list. while last. next ! = None : last = last. next # Compare first and last element # until both pointers are not equal. while front ! = last: # If last element data is less than # or equal to front element data, # then add last element to # result list and change the last # pointer to its previous element. if last.data < = front.data: resEnd. next = last next = last.prev last.prev. next = None last.prev = resEnd last = next resEnd = resEnd. next # If front element is smaller, then # add it to result list and change # front pointer to its next element. else : resEnd. next = front next = front. next front. next = None front.prev = resEnd front = next resEnd = resEnd. next # Add the single element left to the # result list. resEnd. next = front front.prev = resEnd # The head of required sorted list is # next to dummy node res. return res. next # Function to insert a node at the # beginning of the Doubly Linked List def push(head_ref, new_data): # put in the data new_node = Node(new_data) # since we are adding at the # beginning, prev is always None new_node.prev = None # link the old list of the new node new_node. next = head_ref # change prev of head node to new node if head_ref ! = None : head_ref.prev = new_node # move the head to point to the new node head_ref = new_node return head_ref # Function to print nodes in # a given doubly linked list def printList(head): # If list is empty if head = = None : print ( "Doubly Linked list empty" ) while head ! = None : print (head.data, end = " " ) head = head. next # Driver program to test above if __name__ = = '__main__' : head = None # Create the doubly linked list: # 2<.5<.7<.12<.10<.6<.4<.1 head = push(head, 1 ) head = push(head, 4 ) head = push(head, 6 ) head = push(head, 10 ) head = push(head, 12 ) head = push(head, 7 ) head = push(head, 5 ) head = push(head, 2 ) print ( "Original Doubly linked list:" ) printList(head) # sort the biotonic DLL head = sort(head) print ( "\nDoubly linked list after sorting:" ) printList(head) # This code is contributed by Rituraj Jain |
C#
// C# implementation to sort the biotonic // doubly linked list using System; class GFG { // structure of node of the doubly linked list public class Node { public int data; public Node next; public Node prev; }; // function to sort a biotonic doubly linked list static Node sort(Node head) { // If number of elements are less than or // equal to 1 then return. if (head == null || head.next == null ) { return head; } // Pointer to first element of doubly // linked list. Node front = head; // Pointer to last element of doubly // linked list. Node last = head; // Dummy node to which resultant // sorted list is added. Node res = new Node(); // Node after which next element // of sorted list is added. Node resEnd = res; // Node to store next element to // which pointer is moved after // element pointed by that pointer // is added to result list. Node next; // Find last element of input list. while (last.next != null ) { last = last.next; } // Compare first and last element // until both pointers are not equal. while (front != last) { // If last element data is less than // or equal to front element data, // then add last element to // result list and change the // last pointer to its previous // element. if (last.data <= front.data) { resEnd.next = last; next = last.prev; last.prev.next = null ; last.prev = resEnd; last = next; resEnd = resEnd.next; } // If front element is smaller, then // add it to result list and change // front pointer to its next element. else { resEnd.next = front; next = front.next; front.next = null ; front.prev = resEnd; front = next; resEnd = resEnd.next; } } // Add the single element left to the // result list. resEnd.next = front; front.prev = resEnd; // The head of required sorted list is // next to dummy node res. return res.next; } // Function to insert a node at the beginning // of the Doubly Linked List static Node push(Node head_ref, int new_data) { // allocate node Node new_node = new Node(); // put in the data new_node.data = new_data; // since we are adding at the beginning, // prev is always null new_node.prev = null ; // link the old list of the new node new_node.next = (head_ref); // change prev of head node to new node if ((head_ref) != null ) (head_ref).prev = new_node; // move the head to point to the new node (head_ref) = new_node; return head_ref; } // Function to print nodes in a given doubly // linked list static void printList(Node head) { // if list is empty if (head == null ) Console.Write( "Doubly Linked list empty" ); while (head != null ) { Console.Write( head.data + " " ); head = head.next; } } // Driver code public static void Main(String []args) { Node head = null ; // Create the doubly linked list: // 2<.5<.7<.12<.10<.6<.4<.1 head = push(head, 1); head = push(head, 4); head = push(head, 6); head = push(head, 10); head = push(head, 12); head = push(head, 7); head = push(head, 5); head = push(head, 2); Console.Write( "Original Doubly linked list:\n" ); printList(head); // sort the biotonic DLL head = sort(head); Console.Write( "\nDoubly linked list after sorting:\n" ); printList(head); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation to sort the biotonic // doubly linked list // structure of node of the doubly linked list class Node { constructor() { this .data = 0; this .next = null ; this .prev = null ; } } // function to sort a biotonic doubly linked list function sort(head) { // If number of elements are less than or // equal to 1 then return. if (head == null || head.next == null ) { return head; } // Pointer to first element of doubly // linked list. var front = head; // Pointer to last element of doubly // linked list. var last = head; // Dummy node to which resultant // sorted list is added. var res = new Node(); // Node after which next element // of sorted list is added. var resEnd = res; // Node to store next element to // which pointer is moved after // element pointed by that pointer // is added to result list. var next; // Find last element of input list. while (last.next != null ) { last = last.next; } // Compare first and last element // until both pointers are not equal. while (front != last) { // If last element data is less than // or equal to front element data, // then add last element to // result list and change the // last pointer to its previous // element. if (last.data <= front.data) { resEnd.next = last; next = last.prev; last.prev.next = null ; last.prev = resEnd; last = next; resEnd = resEnd.next; } // If front element is smaller, then // add it to result list and change // front pointer to its next element. else { resEnd.next = front; next = front.next; front.next = null ; front.prev = resEnd; front = next; resEnd = resEnd.next; } } // Add the single element left to the // result list. resEnd.next = front; front.prev = resEnd; // The head of required sorted list is // next to dummy node res. return res.next; } // Function to insert a node at the beginning // of the Doubly Linked List function push(head_ref, new_data) { // allocate node var new_node = new Node(); // put in the data new_node.data = new_data; // since we are adding at the beginning, // prev is always null new_node.prev = null ; // link the old list of the new node new_node.next = head_ref; // change prev of head node to new node if (head_ref != null ) head_ref.prev = new_node; // move the head to point to the new node head_ref = new_node; return head_ref; } // Function to print nodes in a given doubly // linked list function printList(head) { // if list is empty if (head == null ) document.write( "Doubly Linked list empty" ); while (head != null ) { document.write(head.data + " " ); head = head.next; } } // Driver code var head = null ; // Create the doubly linked list: // 2<.5<.7<.12<.10<.6<.4<.1 head = push(head, 1); head = push(head, 4); head = push(head, 6); head = push(head, 10); head = push(head, 12); head = push(head, 7); head = push(head, 5); head = push(head, 2); document.write( "Original Doubly linked list: <br>" ); printList(head); // sort the biotonic DLL head = sort(head); document.write( "<br>Doubly linked list after sorting:<br>" ); printList(head); </script> |
Original Doubly linked list: 2 5 7 12 10 6 4 1 Doubly linked list after sorting: 1 2 4 5 6 7 10 12
Complexity Analysis:
- Time Complexity: O(n)
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!