Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of increment/decrement operations such that array contains all elements from...

Minimum number of increment/decrement operations such that array contains all elements from 1 to N

Given an array of N elements, the task is to convert it into a permutation (Each number from 1 to N occurs exactly once) by using the following operations a minimum number of times: 

  • Increment any number.
  • Decrement any number.

Examples: 

Input: arr[] = {1, 1, 4}
Output: 2
The array can be converted into [1, 2, 3]
by adding 1 to the 1st index i.e. 1 + 1 = 2
and decrementing 2nd index by 1 i.e. 4- 1 = 3

Input: arr[] = {3, 0}
Output: 2

The array can be converted into [2, 1]

Approach: To minimize the number of moves/operations, sort the given array and make a[i] = i+1 (0-based) which will take abs(i+1-a[i]) no. of operations for each element.

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum operations
long long minimumMoves(int a[], int n)
{
 
    long long operations = 0;
 
    // Sort the given array
    sort(a, a + n);
 
    // Count operations by assigning a[i] = i+1
    for (int i = 0; i < n; i++)
        operations += abs(a[i] - (i + 1));
 
    return operations;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 3, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << minimumMoves(arr, n);
 
    return 0;
}


Java




// Java implementation of the above approach
 
import java.util.*;
class solution
{
// Function to find the minimum operations
static long minimumMoves(int a[], int n)
{
  
    long operations = 0;
  
    // Sort the given array
    Arrays.sort(a);
  
    // Count operations by assigning a[i] = i+1
    for (int i = 0; i < n; i++)
        operations += (long)Math.abs(a[i] - (i + 1));
  
    return operations;
}
  
// Driver Code
public static void main(String args[])
{
    int arr[] = { 5, 3, 2 };
    int n = arr.length;
  
    System.out.print(minimumMoves(arr, n));
 
}
 
}
//contributed by Arnab Kundu


Python3




# Python 3 implementation of the above approach
 
# Function to find the minimum operations
def minimumMoves(a, n):
     
    operations = 0
    # Sort the given array
    a.sort(reverse = False)
     
    # Count operations by assigning a[i] = i+1
    for i in range(0,n,1):
        operations = operations + abs(a[i] - (i + 1))
 
    return operations
 
# Driver Code
if __name__ == '__main__':
    arr = [ 5, 3, 2 ]
    n = len(arr)
 
    print(minimumMoves(arr, n))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the above approach
using System;
 
class GFG
{
// Function to find the minimum operations
static long minimumMoves(int []a, int n)
{
 
    long operations = 0;
 
    // Sort the given array
    Array.Sort(a);
 
    // Count operations by assigning
    // a[i] = i+1
    for (int i = 0; i < n; i++)
        operations += (long)Math.Abs(a[i] - (i + 1));
 
    return operations;
}
 
// Driver Code
static public void Main ()
{
    int []arr = { 5, 3, 2 };
    int n = arr.Length;
     
    Console.WriteLine(minimumMoves(arr, n));
}
}
 
// This code is contributed by Sach_Code


PHP




<?php
// PHP implementation of the above approach
// Function to find the minimum operations
 
function minimumMoves($a, $n)
{
    $operations = 0;
 
    // Sort the given array
    sort($a);
 
    // Count operations by assigning
    // a[i] = i+1
    for ($i = 0; $i < $n; $i++)
        $operations += abs($a[$i] -
                          ($i + 1));
 
    return $operations;
}
 
// Driver Code
$arr = array( 5, 3, 2 );
$n = sizeof($arr);
 
echo minimumMoves($arr, $n);
 
// This code is contributed by ajit
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find the minimum operations
function minimumMoves(a, n)
{
    let operations = 0;
 
    // Sort the given array
    a.sort();
 
    // Count operations by assigning
    // a[i] = i+1
    for(let i = 0; i < n; i++)
        operations += Math.abs(a[i] - (i + 1));
 
    return operations;
}
 
// Driver code
let arr = [ 5, 3, 2 ];
let n = arr.length;
   
document.write(minimumMoves(arr, n));
 
// This code is contributed by divyesh072019
 
</script>


Output

4

Complexity Analysis:

  • Time Complexity: O(NlogN)
  • Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments