Given an integer N. The task is to find the sum upto N terms of the given series:
3, -6, 12, -24, … upto N terms
Examples:
Input : N = 5 Output : Sum = 33 Input : N = 20 Output : Sum = -1048575
On observing the given series, it can be seen that the ratio of every term with their previous term is same which is -2. Hence the given series is a GP(Geometric Progression) series.
You can learn more about GP series here.
So, when r < 0.
In above GP series the first term i:e a = 3 and common ratio i:e r = (-2).
Therefore, .
Thus, .
Below is the implementation of above approach:
C++
//C++ program to find sum upto N term of the series: // 3, -6, 12, -24, ..... #include<iostream> #include<math.h> using namespace std; //calculate sum upto N term of series class gfg { public : int Sum_upto_nth_Term( int n) { return (1 - pow (-2, n)); } }; // Driver code int main() { gfg g; int N = 5; cout<<g.Sum_upto_nth_Term(N); } |
Java
//Java program to find sum upto N term of the series: // 3, -6, 12, -24, ..... import java.util.*; //calculate sum upto N term of series class solution { static int Sum_upto_nth_Term( int n) { return ( 1 -( int )Math.pow(- 2 , n)); } // Driver code public static void main (String arr[]) { int N = 5 ; System.out.println(Sum_upto_nth_Term(N)); } } |
Python
# Python program to find sum upto N term of the series: # 3, -6, 12, -24, ..... # calculate sum upto N term of series def Sum_upto_nth_Term(n): return ( 1 - pow ( - 2 , n)) # Driver code N = 5 print (Sum_upto_nth_Term(N)) |
C#
// C# program to find sum upto // N term of the series: // 3, -6, 12, -24, ..... // calculate sum upto N term of series class GFG { static int Sum_upto_nth_Term( int n) { return (1 -( int )System.Math.Pow(-2, n)); } // Driver code public static void Main() { int N = 5; System.Console.WriteLine(Sum_upto_nth_Term(N)); } } // This Code is contributed by mits |
PHP
<?php // PHP program to find sum upto // Nth term of the series: // 3, -6, 12, -24, ..... // calculate sum upto N term of series function Sum_upto_nth_Term( $n ) { return (1 - pow(-2, $n )); } // Driver code $N = 5; echo (Sum_upto_nth_Term( $N )); // This code is contributed // by Sach_Code ?> |
Javascript
<script> // Java program to find sum upto N term of the series: // 3, -6, 12, -24, ..... // calculate sum upto N term of series function Sum_upto_nth_Term( n) { return (1 - parseInt( Math.pow(-2, n))); } // Driver code let N = 5; document.write(Sum_upto_nth_Term(N)); // This code is contributed by 29AjayKumar </script> |
33
Time Complexity: O(logn), where n is the given integer.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!