Given two integers N and K, the task is to find the number of cubes of size K that can be contained in a cube of size N.
Examples:
Input: N = 2, K = 1
Output: 8
Explanation:
There are 8 cubes of size 1 that can be drawn inside the bigger cube of size 2.
Input: N = 5, K = 2
Output: 64
Explanation:
There are 64 cubes of size 2 can be drawn inside the bigger cube of size 5.
Approach: The key observation to solve the problem is that the number of cubes inside the cube of size N is (N2 * (N+1)2)/4. Therefore, the cubes of size K inside the cube of size N is:
Below is the implementation of the above approach:
C++
// C++ implementation of the // above approach #include <bits/stdc++.h> using namespace std; // Function to find the number // of the cubes of the size K int No_of_cubes( int N, int K) { int No = 0; // Stores the number of cubes No = (N - K + 1); // Stores the number of cubes // of size k No = pow (No, 3); return No; } // Driver Code int main() { // Size of the bigger cube int N = 5; // Size of the smaller cube int K = 2; cout << No_of_cubes(N, K); return 0; } |
Java
// Java implementation of the // above approach class GFG{ // Function to find the number // of the cubes of the size K static int No_of_cubes( int N, int K) { int No = 0 ; // Stores the number of cubes No = (N - K + 1 ); // Stores the number of cubes // of size k No = ( int ) Math.pow(No, 3 ); return No; } // Driver Code public static void main(String[] args) { // Size of the bigger cube int N = 5 ; // Size of the smaller cube int K = 2 ; System.out.print(No_of_cubes(N, K)); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation of the # above approach # Function to find the number # of the cubes of the size K def No_of_cubes(N, K): No = 0 # Stores the number of cubes No = (N - K + 1 ) # Stores the number of cubes # of size k No = pow (No, 3 ) return No # Driver Code # Size of the bigger cube N = 5 # Size of the smaller cube K = 2 print (No_of_cubes(N, K)) # This code is contributed by sanjoy_62 |
C#
// C# implementation of the // above approach using System; class GFG{ // Function to find the number // of the cubes of the size K static int No_of_cubes( int N, int K) { int No = 0; // Stores the number of cubes No = (N - K + 1); // Stores the number of cubes // of size k No = ( int )Math.Pow(No, 3); return No; } // Driver Code public static void Main() { // Size of the bigger cube int N = 5; // Size of the smaller cube int K = 2; Console.Write(No_of_cubes(N, K)); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // JavaScript program for // the above approach // Function to find the number // of the cubes of the size K function No_of_cubes(N, K) { let No = 0; // Stores the number of cubes No = (N - K + 1); // Stores the number of cubes // of size k No = Math.pow(No, 3); return No; } // Driver code // Size of the bigger cube let N = 5; // Size of the smaller cube let K = 2; document.write(No_of_cubes(N, K)); // This code is contributed by splevel62. </script> |
64
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!