Monday, January 13, 2025
Google search engine
HomeData Modelling & AICount cubes of size K inscribed in a cube of size N

Count cubes of size K inscribed in a cube of size N

Given two integers N and K, the task is to find the number of cubes of size K that can be contained in a cube of size N.

Examples:

Input: N = 2, K = 1
Output: 8
Explanation:
There are 8 cubes of size 1 that can be drawn inside the bigger cube of size 2. 
 

 Input: N = 5, K = 2
Output: 64
Explanation:
There are 64 cubes of size 2 can be drawn inside the bigger cube of size 5.

Approach: The key observation to solve the problem is that the number of cubes inside the cube of size N is (N2 * (N+1)2)/4. Therefore, the cubes of size K inside the cube of size N is:

(N - K +1 )^3

Below is the implementation of the above approach:

C++




// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number
// of the cubes of the size K
int No_of_cubes(int N, int K)
{
    int No = 0;
 
    // Stores the number of cubes
    No = (N - K + 1);
 
    // Stores the number of cubes
    // of size k
    No = pow(No, 3);
    return No;
}
 
// Driver Code
int main()
{
    // Size of the bigger cube
    int N = 5;
 
    // Size of the smaller cube
    int K = 2;
 
    cout << No_of_cubes(N, K);
    return 0;
}


Java




// Java implementation of the
// above approach
class GFG{
 
// Function to find the number
// of the cubes of the size K
static int No_of_cubes(int N,
                       int K)
{
  int No = 0;
 
  // Stores the number of cubes
  No = (N - K + 1);
 
  // Stores the number of cubes
  // of size k
  No = (int) Math.pow(No, 3);
  return No;
}
 
// Driver Code
public static void main(String[] args)
{
  // Size of the bigger cube
  int N = 5;
 
  // Size of the smaller cube
  int K = 2;
 
  System.out.print(No_of_cubes(N, K));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the
# above approach
  
# Function to find the number
# of the cubes of the size K
def No_of_cubes(N, K):
     
    No = 0
  
    # Stores the number of cubes
    No = (N - K + 1)
  
    # Stores the number of cubes
    # of size k
    No = pow(No, 3)
    return No
 
# Driver Code
 
# Size of the bigger cube
N = 5
  
# Size of the smaller cube
K = 2
  
print(No_of_cubes(N, K))
 
# This code is contributed by sanjoy_62


C#




// C# implementation of the
// above approach
using System;
  
class GFG{
      
// Function to find the number
// of the cubes of the size K
static int No_of_cubes(int N, int K)
{
    int No = 0;
     
    // Stores the number of cubes
    No = (N - K + 1);
     
    // Stores the number of cubes
    // of size k
    No = (int)Math.Pow(No, 3);
    return No;
}
  
// Driver Code
public static void Main()
{
     
    // Size of the bigger cube
    int N = 5;
     
    // Size of the smaller cube
    int K = 2;
     
    Console.Write(No_of_cubes(N, K));
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
 
// JavaScript program for
// the above approach
 
// Function to find the number
// of the cubes of the size K
function No_of_cubes(N, K)
{
  let No = 0;
  
  // Stores the number of cubes
  No = (N - K + 1);
  
  // Stores the number of cubes
  // of size k
  No = Math.pow(No, 3);
  return No;
}
 
// Driver code
 
  // Size of the bigger cube
  let N = 5;
  
  // Size of the smaller cube
  let K = 2;
  document.write(No_of_cubes(N, K));
   
  // This code is contributed by splevel62.
</script>


Output: 

64

 

Time Complexity: O(1) 
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments