In mathematics, Bertrand’s Postulate states that there is a prime number in the range to where n is a natural number and n >= 4. It has been proved by Chebyshev and later by Ramanujan. A lenient form of the postulate states that there exists a prime in range n to 2n for any n(n >= 2).
There exists a prime p for for all n <= 4. The less stricter form states that there exists a prime p. For for all n <= 2.
Examples:
For n = 4 and 2*n – 2 = 6,
5 is a prime number in the range (4, 6).
For n = 5 and 2*n – 2 = 8,
7 is a prime number in the range (5, 8).
For n = 6 and 2*n – 2 = 10,
7 is a prime number in the range (6, 10).
For n = 7 and 2*n – 2 = 12,
11 is a prime number in the range (7, 12).
For n = 8 and 2*n – 2 = 14,
11 is a prime number in the range (8, 14).
Examples :
Input: n = 4
Output: Prime numbers in range (4, 6) are 5Input: n = 5
Output: Prime numbers in range (5, 8) are 7Input: n = 6
Output: Prime numbers in range (6, 10) are 7
C++
// CPP code to verify Bertrand's postulate // for a given n. #include <bits/stdc++.h> using namespace std; bool isprime( int n) { // check whether a number is prime or not for ( int i = 2; i * i <= n; i++) if (n % i == 0) // i is a factor of n return false ; return true ; } int main() { int n = 10; // Checking Bertrand's postulate // Presence of prime numbers in range (n, 2n - 2) cout << "Prime numbers in range (" << n << ", " << 2 * n - 2 << ")\n" ; for ( int i = n + 1; i < 2 * n - 2; i++) if (isprime(i)) cout << i << "\n" ; return 0; } |
Java
// Java code to verify Bertrand's // postulate for a given n. import java.io.*; class GFG { static boolean isprime( int n) { // check whether a number // is prime or not for ( int i = 2 ; i * i <= n; i++) if (n % i == 0 ) // i is a factor of n return false ; return true ; } // Driver Code public static void main (String[] args) { int n = 10 ; // Checking Bertrand's postulate // Presence of prime numbers in // range (n, 2n - 2) System.out.println( "Prime numbers in range (" + n + ", " + ( 2 * n - 2 ) + ")" ); for ( int i = n + 1 ; i < 2 * n - 2 ; i++) if (isprime(i)) System.out.println(i); } } // This code is contributed // by shiv_bhakt |
Python3
# PHP code to verify # Bertrand's postulate # for a given n. def isprime(n): # check whether a number # is prime or not i = 2 ; while (i * i < = n): if (n % i = = 0 ): # i is a factor of n return False ; i = i + 1 ; return True ; # Driver Code n = 10 ; # Checking Bertrand's # postulate Presence # of prime numbers in # range (n, 2n - 2) print ( "Prime numbers in range (" , n , ", " , 2 * n - 2 , ")" ); i = n + 1 ; while (i < ( 2 * n - 2 )): if (isprime(i)): print (i); i = i + 1 ; # This code is contributed by mits |
C#
// C# code to verify Bertrand's // postulate for a given n. using System; class GFG { static bool isprime( int n) { // check whether a number // is prime or not for ( int i = 2; i * i <= n; i++) if (n % i == 0) // i is a factor of n return false ; return true ; } // Driver Code public static void Main () { int n = 10; // Checking Bertrand's postulate // Presence of prime numbers in // range (n, 2n - 2) Console.WriteLine( "Prime numbers in range (" + n + ", " + (2 * n - 2) + ")" ); for ( int i = n + 1; i < 2 * n - 2; i++) if (isprime(i)) Console.WriteLine(i); } } // This code is contributed // by shiv_bhakt |
PHP
<?php // PHP code to verify Bertrand's // postulate for a given n. function isprime( $n ) { // check whether a number // is prime or not for ( $i = 2; $i * $i <= $n ; $i ++) if ( $n % $i == 0) // i is a factor of n return false; return true; } // Driver Code $n = 10; // Checking Bertrand's postulate // Presence of prime numbers in // range (n, 2n - 2) echo "Prime numbers in range (" , $n , ", " , 2 * $n - 2 , ")\n" ; for ( $i = $n + 1; $i < 2 * $n - 2; $i ++) if (isprime( $i )) echo $i , "\n" ; // This code is contributed by ajit ?> |
Javascript
<script> // Javascript code to verify Bertrand's // postulate for a given n. function isprime(n) { // check whether a number // is prime or not for (let i = 2; i * i <= n; i++) if (n % i == 0) // i is a factor of n return false ; return true ; } let n = 10; // Checking Bertrand's postulate // Presence of prime numbers in // range (n, 2n - 2) document.write( "Prime numbers in range (" + n + ", " + (2 * n - 2) + ")" + "</br>" ); for (let i = n + 1; i < 2 * n - 2; i++) if (isprime(i)) document.write(i + "</br>" ); </script> |
Prime numbers in range (10, 18) 11 13 17
Time Complexity: O(n*sqrt(n))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!