Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICheck if a number can be expressed as product of a prime...

Check if a number can be expressed as product of a prime and a composite number

Given a number N, the task is to check if N can be represented as the product of a prime and a composite number or not. If it can, then print Yes, otherwise No.

Examples:

Input: N = 52 
Output: Yes
Explanation: 52 can be represented as the multiplication of 4 and 13, where 4 is a composite and 13 is a prime number.

Input: N = 49
Output: No

Approach: This problem can be solved with the help of the Sieve of Eratosthenes algorithm.  Now, to solve this problem, follow the below steps:

  1. Create a boolean array isPrime, where the ith element is true if it is a prime, otherwise it’s false.
  2. Find all prime numbers till N using sieve algorithm.
  3. Now run a loop for i=2 to i<N, and on each iteration:
    • Check for these two conditions:
      • If N is divisible by i.
      • If i is a prime number and N/i isn’t or if i isn’t a prime number and N/i is.
    • If both of the above conditions satisfy, return true.
    • Otherwise, return false.
  4. Print the answer, according to the above observation.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate all prime
// numbers less than N
void SieveOfEratosthenes(int N, bool isPrime[])
{
    // Initialize all entries of boolean array
    // as true. A value in isPrime[i] will finally
    // be false if i is Not a prime, else true
    // bool isPrime[N+1];
    isPrime[0] = isPrime[1] = false;
    for (int i = 2; i <= N; i++)
        isPrime[i] = true;
 
    for (int p = 2; p * p <= N; p++) {
 
        // If isPrime[p] is not changed,
        // then it is a prime
        if (isPrime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= N; i += p)
                isPrime[i] = false;
        }
    }
}
 
// Function to check if we can
// represent N as product of a prime
// and a composite number or not
bool isRepresentable(int N)
{
 
    // Generating primes using Sieve
    bool isPrime[N + 1];
 
    SieveOfEratosthenes(N, isPrime);
 
    // Traversing through the array
    for (int i = 2; i < N; i++) {
 
        if (N % i == 0) {
            if (N % i == 0
                    and (isPrime[i] and !isPrime[N / i])
                or (!isPrime[i] and isPrime[N / i])) {
                return true;
            }
        }
    }
 
    return false;
}
 
// Driver Code
int main()
{
    int N = 52;
    if (isRepresentable(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program to implement the above approach
import java.util.*;
public class GFG
{
   
// Function to generate all prime
// numbers less than N
static void SieveOfEratosthenes(int N, boolean []isPrime)
{
   
    // Initialize all entries of boolean array
    // as true. A value in isPrime[i] will finally
    // be false if i is Not a prime, else true
    // bool isPrime[N+1];
    isPrime[0] = isPrime[1] = false;
    for (int i = 2; i <= N; i++)
        isPrime[i] = true;
 
    for (int p = 2; p * p <= N; p++) {
 
        // If isPrime[p] is not changed,
        // then it is a prime
        if (isPrime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= N; i += p)
                isPrime[i] = false;
        }
    }
}
 
// Function to check if we can
// represent N as product of a prime
// and a composite number or not
static boolean isRepresentable(int N)
{
 
    // Generating primes using Sieve
    boolean []isPrime = new boolean[N + 1];
 
    SieveOfEratosthenes(N, isPrime);
 
    // Traversing through the array
    for (int i = 2; i < N; i++) {
 
        if (N % i == 0) {
            if (N % i == 0
                    && (isPrime[i] && !isPrime[N / i])
                || (!isPrime[i] && isPrime[N / i])) {
                return true;
            }
        }
    }
 
    return false;
}
 
// Driver Code
public static void main(String arg[])
{
    int N = 52;
    if (isRepresentable(N)) {
        System.out.println("Yes");
    }
    else {
        System.out.println("No");
    }
}
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# python program for the above approach
import math
 
# Function to generate all prime
# numbers less than N
def SieveOfEratosthenes(N, isPrime):
 
    # Initialize all entries of boolean array
    # as true. A value in isPrime[i] will finally
    # be false if i is Not a prime, else true
    # bool isPrime[N+1];
    isPrime[0] = False
    isPrime[1] = False
    for i in range(2, N+1):
        isPrime[i] = True
 
    for p in range(2, int(math.sqrt(N)) + 1):
 
        # If isPrime[p] is not changed,
        # then it is a prime
        if (isPrime[p] == True):
 
            # Update all multiples of p
            for i in range(p+2, N+1, p):
                isPrime[i] = False
 
# Function to check if we can
# represent N as product of a prime
# and a composite number or not
def isRepresentable(N):
 
    # Generating primes using Sieve
    isPrime = [0 for _ in range(N + 1)]
 
    SieveOfEratosthenes(N, isPrime)
 
    # Traversing through the array
    for i in range(2, N):
 
        if (N % i == 0):
            if (N % i == 0 and (isPrime[i] and not isPrime[N // i]) or (not isPrime[i] and isPrime[N // i])):
                return True
 
    return False
 
# Driver Code
if __name__ == "__main__":
 
    N = 52
    if (isRepresentable(N)):
        print("Yes")
 
    else:
        print("No")
 
    # This code is contributed by rakeshsahni


C#




// C# program to implement the above approach
using System;
class GFG
{
// Function to generate all prime
// numbers less than N
static void SieveOfEratosthenes(int N, bool []isPrime)
{
    // Initialize all entries of boolean array
    // as true. A value in isPrime[i] will finally
    // be false if i is Not a prime, else true
    // bool isPrime[N+1];
    isPrime[0] = isPrime[1] = false;
    for (int i = 2; i <= N; i++)
        isPrime[i] = true;
 
    for (int p = 2; p * p <= N; p++) {
 
        // If isPrime[p] is not changed,
        // then it is a prime
        if (isPrime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= N; i += p)
                isPrime[i] = false;
        }
    }
}
 
// Function to check if we can
// represent N as product of a prime
// and a composite number or not
static bool isRepresentable(int N)
{
 
    // Generating primes using Sieve
    bool []isPrime = new bool[N + 1];
 
    SieveOfEratosthenes(N, isPrime);
 
    // Traversing through the array
    for (int i = 2; i < N; i++) {
 
        if (N % i == 0) {
            if (N % i == 0
                    && (isPrime[i] && !isPrime[N / i])
                || (!isPrime[i] && isPrime[N / i])) {
                return true;
            }
        }
    }
 
    return false;
}
 
// Driver Code
public static void Main()
{
    int N = 52;
    if (isRepresentable(N)) {
        Console.Write("Yes");
    }
    else {
        Console.Write("No");
    }
}
}
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// Javascript program for the above approach
 
// Function to generate all prime
// numbers less than N
function SieveOfEratosthenes(N, isPrime)
{
    // Initialize all entries of boolean array
    // as true. A value in isPrime[i] will finally
    // be false if i is Not a prime, else true
    // bool isPrime[N+1];
    isPrime[0] = isPrime[1] = false;
    for (let i = 2; i <= N; i++)
        isPrime[i] = true;
 
    for (let p = 2; p * p <= N; p++) {
 
        // If isPrime[p] is not changed,
        // then it is a prime
        if (isPrime[p] == true) {
 
            // Update all multiples of p
            for (let i = p * 2; i <= N; i += p)
                isPrime[i] = false;
        }
    }
}
 
// Function to check if we can
// represent N as product of a prime
// and a composite number or not
function isRepresentable(N)
{
 
    // Generating primes using Sieve
    let isPrime = [];
 
    SieveOfEratosthenes(N, isPrime);
 
    // Traversing through the array
    for (let i = 2; i < N; i++) {
 
        if (N % i == 0) {
            if (N % i == 0
                    && (isPrime[i] && !isPrime[N / i])
                || (!isPrime[i] && isPrime[N / i])) {
                return true;
            }
        }
    }
 
    return false;
}
 
// Driver Code
let N = 52;
if (isRepresentable(N)) {
  document.write("Yes");
}
 
else {
  document.write("No");
}
 
// This code is contributed by Samim Hossain Mondal.
</script>


Output

Yes









Time complexity: O(N*log(logN)) 
Auxiliary Space: O(N)

Another Approach

Below is the implementation of the above approach:

C++




#include <iostream>
#include <cmath>
 
// Function to check if a number is prime
bool isPrime(int n) {
    if (n <= 1)
        return false;
 
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0)
            return false;
    }
 
    return true;
}
 
// Function to check if N can be represented as the product of a prime and a composite number
bool isProductOfPrimeAndComposite(int N) {
    if (N <= 3)
        return false;
 
    for (int i = 2; i <= sqrt(N); i++) {
        if (N % i == 0) {
            int factor1 = i;
            int factor2 = N / i;
 
            // Check if both factors are prime and composite numbers
            if (isPrime(factor1) && !isPrime(factor2))
                return true;
            if (!isPrime(factor1) && isPrime(factor2))
                return true;
        }
    }
 
    return false;
}
// Driver Code
int main() {
    int N=52;
    if (isProductOfPrimeAndComposite(N))
        std::cout << "Yes" << std::endl;
    else
        std::cout << "No" << std::endl;
 
    return 0;
}


Java




import java.util.*;
 
public class GFG {
 
    // Function to check if a number is prime
    static boolean isPrime(int n) {
        if (n <= 1)
            return false;
 
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0)
                return false;
        }
 
        return true;
    }
 
    // Function to check if N can be represented as the product
   // of a prime and a composite number
    static boolean isProductOfPrimeAndComposite(int N) {
        if (N <= 3)
            return false;
 
        for (int i = 2; i <= Math.sqrt(N); i++) {
            if (N % i == 0) {
                int factor1 = i;
                int factor2 = N / i;
 
                // Check if both factors are prime and composite numbers
                if (isPrime(factor1) && !isPrime(factor2))
                    return true;
                if (!isPrime(factor1) && isPrime(factor2))
                    return true;
            }
        }
 
        return false;
    }
 
    // Driver Code
    public static void main(String[] args) {
        int N = 52;
        if (isProductOfPrimeAndComposite(N))
            System.out.println("Yes");
        else
            System.out.println("No");
 
        // This Code Is Contributed By Shubham Tiwari.
    }
}


Python3




import math
 
# Function to check if a number is prime
def is_prime(n):
    if n <= 1:
        return False
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return False
    return True
 
# Function to check if N can be represented as the
# product of a prime and a composite number
def is_product_of_prime_and_composite(N):
    if N <= 3:
        return False
    for i in range(2, int(math.sqrt(N)) + 1):
        if N % i == 0:
            factor1 = i
            factor2 = N // i
            # Check if both factors are prime and composite numbers
            if is_prime(factor1) and not is_prime(factor2):
                return True
            if not is_prime(factor1) and is_prime(factor2):
                return True
    return False
 
# Driver Code
if __name__ == "__main__":
    N = 52
    if is_product_of_prime_and_composite(N):
        print("Yes")
    else:
        print("No")
 
    # This Code Is Contributed By Shubham Tiwari.


C#




using System;
 
class GFG
{
    // Function to check if a number is prime
    static bool IsPrime(int n)
    {
        if (n <= 1)
            return false;
 
        for (int i = 2; i <= Math.Sqrt(n); i++)
        {
            if (n % i == 0)
                return false;
        }
 
        return true;
    }
 
    // Function to check if N can be represented as the
   // product of a prime and a composite number
    static bool IsProductOfPrimeAndComposite(int N)
    {
        if (N <= 3)
            return false;
 
        for (int i = 2; i <= Math.Sqrt(N); i++)
        {
            if (N % i == 0)
            {
                int factor1 = i;
                int factor2 = N / i;
 
                // Check if both factors are prime and
               // composite numbers
                if (IsPrime(factor1) && !IsPrime(factor2))
                    return true;
 
                if (!IsPrime(factor1) && IsPrime(factor2))
                    return true;
            }
        }
 
        return false;
    }
 
    static void Main(string[] args)
    {
        int N = 52;
 
        if (IsProductOfPrimeAndComposite(N))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
 
        // This Code Is Contributed By Shubham Tiwari.
    }
}


Javascript




// Function to check if a number is prime
function isPrime(n) {
    // If the number is less than or equal to 1, it is not prime
    if (n <= 1)
        return false;
 
    // Check divisibility from 2 up to the square root of the number
    for (let i = 2; i <= Math.sqrt(n); i++) {
        if (n % i === 0)
            // If the number is divisible by any number in this range, it is not prime
            return false;
    }
 
    // If the number is not divisible by any number in the range, it is prime
    return true;
}
 
// Function to check if N can be represented as the product of a prime and a composite number
function isProductOfPrimeAndComposite(N) {
    // If N is less than or equal to 3, it cannot be represented as the product of a prime and a composite number
    if (N <= 3)
        return false;
 
    // Check for factors from 2 up to the square root of N
    for (let i = 2; i <= Math.sqrt(N); i++) {
        if (N % i === 0) {
            let factor1 = i;
            let factor2 = N / i;
 
            // If one factor is prime and the other is composite, return true
            if (isPrime(factor1) && !isPrime(factor2))
                return true;
            if (!isPrime(factor1) && isPrime(factor2))
                return true;
        }
    }
 
    // If no such factors are found, return false
    return false;
}
 
// Test the function with an example
let N = 52;
if (isProductOfPrimeAndComposite(N))
    console.log("Yes");
else
    console.log("No");
 
// This Code Is Contributed By Shubham Tiwari.


Output

Yes










Time Complexity: O(sqrt(N))
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments