Friday, January 3, 2025
Google search engine
HomeData Modelling & AIXOR of Prime Frequencies of Characters in a String

XOR of Prime Frequencies of Characters in a String

Given a string containing only lowercase english alphabets. The task is to find the bitwise XOR of all the prime frequencies of the characters in the string. If no prime frequency is present, then print -1.

Examples

Input : str = "gggggeeekkkks"
Output : 6

Input : str = "aabbbbw"
Output : -1

Approach: 

Below is the implementation of the above approach:

C++




// C++ program to find XOR of Prime
// Frequencies of Characters in a String
#include <bits/stdc++.h>
using namespace std;
 
// Function to create Sieve to check primes
void SieveOfEratosthenes(bool prime[], int p_size)
{
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p <= p_size; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= p_size; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find XOR of prime frequencies
int xorOfPrime(string s)
{
    bool prime[100005];
    memset(prime, true, sizeof(prime));
 
    SieveOfEratosthenes(prime, 10005);
 
    int i, j;
 
    // map is used to store character
    // frequencies
    map<char, int> m;
    for (i = 0; i < s.length(); i++)
        m[s[i]]++;
 
    int result = 0;
    int flag = 0;
 
    // Traverse the map
    for (auto it = m.begin(); it != m.end(); it++) {
        // Calculate XOR of all prime
        // frequencies
        if (prime[it->second]) {
            result ^= it->second;
            flag = 1;
        }
    }
 
    if (!flag)
        return -1;
 
    return result;
}
 
// Driver code
int main()
{
    string s = "gggggeeekkkks";
 
    cout << xorOfPrime(s);
 
    return 0;
}


Java




// Java program to find XOR of Prime
// Frequencies of Characters in a String
import java.util.*;
 
class GFG
{
 
// Function to create Sieve to check primes
static void SieveOfEratosthenes(boolean prime[], int p_size)
{
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p <= p_size; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= p_size; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find XOR of prime frequencies
static int xorOfPrime(char[] s)
{
    boolean []prime = new boolean[100005];
    for(int i = 0; i < 100005; i++)
        prime[i] = true;
 
    SieveOfEratosthenes(prime, 10005);
 
    int i, j;
 
    // map is used to store character
    // frequencies
    Map<Character,Integer> m = new HashMap<>();
    for (i = 0; i < s.length; i++)
    {
        if(m.containsKey(s[i]))
        {
            m.put(s[i], m.get(s[i])+1);
        }
        else
        {
            m.put(s[i], 1);
        }
    }
 
    int result = 0;
    int flag = 0;
 
    // Traverse the map
    for (Map.Entry<Character,Integer> entry : m.entrySet())
    {
        // Calculate XOR of all prime
        // frequencies
        if (prime[entry.getValue()])
        {
            result ^= entry.getValue();
            flag = 1;
        }
    }
 
    if (flag != 1)
        return -1;
 
    return result;
}
 
// Driver code
public static void main(String[] args)
{
    char[] s = "gggggeeekkkks".toCharArray();
 
    System.out.println(xorOfPrime(s));
}
}
 
// This code has been contributed by 29AjayKumar


Python3




# Python3 program to find XOR of Prime
# Frequencies of Characters in a String
from collections import defaultdict
 
# Function to create Sieve to check primes
def SieveOfEratosthenes(prime, p_size):
 
    # False here indicates
    # that it is not prime
    prime[0] = False
    prime[1] = False
    p = 2
 
    while p * p <= p_size:
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p]:
 
            # Update all multiples of p,
            # set them to non-prime
            for i in range(p * 2, p_size + 1, p):
                prime[i] = False
                 
        p += 1
 
# Function to find XOR of prime frequencies
def xorOfPrime(s):
 
    prime = [True] * 100005
     
    SieveOfEratosthenes(prime, 10005)
 
    # map is used to store character frequencies
    m = defaultdict(lambda:0)
    for i in range(0, len(s)):
        m[s[i]] += 1
 
    result = flag = 0
 
    # Traverse the map
    for it in m:
         
        # Calculate XOR of all prime frequencies
        if prime[m[it]]:
            result ^= m[it]
            flag = 1
         
    if not flag:
        return -1
 
    return result
 
# Driver code
if __name__ == "__main__":
 
    s = "gggggeeekkkks"
 
    print(xorOfPrime(s))
 
# This code is contributed by Rituraj Jain


C#




// C# program to find XOR of Prime
// Frequencies of Characters in a String
using System;    
using System.Collections.Generic;
 
class GFG
{
 
// Function to create Sieve to check primes
static void SieveOfEratosthenes(Boolean []prime, int p_size)
{
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p <= p_size; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= p_size; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find XOR of prime frequencies
static int xorOfPrime(char[] s)
{
    Boolean []prime = new Boolean[100005];
    for(int i = 0; i < 100005; i++)
        prime[i] = true;
 
    SieveOfEratosthenes(prime, 10005);
 
     
 
    // map is used to store character
    // frequencies
    Dictionary<char, int> mp = new Dictionary<char,int>();
    for (int i = 0; i < s.Length; i++)
        {
            if (mp.ContainsKey(s[i]))
            {
                var v = mp[s[i]] + 1;
                mp.Remove(s[i]);
                mp.Add(s[i], v);
            }
            else
            {
                mp.Add(s[i], 1);
            }
        }
 
    int result = 0;
    int flag = 0;
 
    // Traverse the map
    foreach(KeyValuePair<char, int> entry in mp)
    {
        // Calculate XOR of all prime
        // frequencies
        if (prime[entry.Value])
        {
            result ^= entry.Value;
            flag = 1;
        }
    }
 
    if (flag != 1)
        return -1;
 
    return result;
}
 
// Driver code
public static void Main(String[] args)
{
    char[] s = "gggggeeekkkks".ToCharArray();
 
    Console.WriteLine(xorOfPrime(s));
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to find XOR of Prime
// Frequencies of Characters in a String
 
// Function to create Sieve to check primes
function SieveOfEratosthenes(prime, p_size)
{
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (var p = 2; p * p <= p_size; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (var i = p * 2; i <= p_size; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find XOR of prime frequencies
function xorOfPrime(s)
{
    var prime = Array(100005).fill(true);
 
    SieveOfEratosthenes(prime, 10005);
 
    var i, j;
 
    // map is used to store character
    // frequencies
    var m = new Map();
    for (i = 0; i < s.length; i++)
    {
        if(m.has(s[i]))
        {
            m.set(s[i], m.get(s[i])+1);
        }
        else
        {
            m.set(s[i],1);
        }
    }
 
    var result = 0;
    var flag = 0;
 
    // Traverse the map
    m.forEach((value,key) => {
        // Calculate XOR of all prime
        // frequencies
        if (prime[value]) {
            result ^= value;
            flag = 1;
        }
    });
 
 
    if (!flag)
        return -1;
 
    return result;
}
 
// Driver code
var s = "gggggeeekkkks";
document.write( xorOfPrime(s));
 
</script>


Output

6
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments