Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AISum of elements of an AP in the given range

Sum of elements of an AP in the given range

Given an arithmetic series in arr and Q queries in the form of [L, R], where L is the left boundary of the range and R is the right boundary. The task is to find the sum of the AP elements in the given range.
Note: The range is 1-indexed and 1 ? L, R ? N, where N is the size of arr.

Examples: 

Input: arr[] = {2, 4, 6, 8, 10, 12, 14, 16}, Q = [[2, 4], [2, 6], [5, 8]] 
Output: 
18 
40 
52 
Explanation: 
Range 1: arr = {4, 6, 8}. Therefore sum = 18 
Range 2: arr = {4, 6, 8, 10, 12}. Therefore sum = 40 
Range 3: arr = {10, 12, 14, 16}. Therefore sum = 52

Input: arr[] = {7, 14, 21, 28, 35, 42}, Q = [[1, 6], [2, 4], [3, 3]] 
Output: 
147 
63 
21 
Explanation: 
Range 1: arr = {7, 14, 21, 28, 35, 42}. Therefore sum = 147 
Range 2: arr = {14, 21, 28}. Therefore sum = 63 
Range 3: arr = {21}. Therefore sum = 21 

Approach: Since the given sequence is an arithmetic progression, the sum can be easily found in two steps efficiently:

  • Multiply the first element of the range by the number of elements in the range.
  • Add (d*k*(k+1))/2 to it, where d is the common difference of the AP and k is (number of elements in the range – 1) which corresponds to the number of gaps.

For example: 
Suppose a[i] be the first element of the range, d is the common difference of AP and k+1 be the number of elements in the given range. 
Then the sum of the range would be 

= a[i] + a[i+1] + a[i+2] + ….. + a[i+k] 
= a[i] + a[i] + d + a[i] + 2 * d + …. + a[i] + k * d 
= a[i] * (k + 1) + d * (1 + 2 + … + k) 
= a[i] * (k + 1) + (d * k * (k+1))/2 

Below is the implementation of the above approach: 

CPP




// C++ program to find the sum of elements
// of an AP in the given range
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find sum in the given range
int findSum(int* arr, int n,
            int left, int right)
{
    // Find the value of k
    int k = right - left;
 
    // Find the common difference
    int d = arr[1] - arr[0];
 
    // Find the sum
    int ans = arr[left - 1] * (k + 1);
    ans = ans + (d * (k * (k + 1))) / 2;
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
    int queries = 3;
    int q[queries][2] = { { 2, 4 },
                          { 2, 6 },
                          { 5, 6 } };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    for (int i = 0; i < queries; i++)
        cout << findSum(arr, n, q[i][0], q[i][1])
             << endl;
}


Java




// Java program to find the sum of elements
// of an AP in the given range
class GFG{
  
// Function to find sum in the given range
static int findSum(int []arr, int n,
            int left, int right)
{
    // Find the value of k
    int k = right - left;
  
    // Find the common difference
    int d = arr[1] - arr[0];
  
    // Find the sum
    int ans = arr[left - 1] * (k + 1);
    ans = ans + (d * (k * (k + 1))) / 2;
  
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
    int queries = 3;
    int q[][] = { { 2, 4 },
                          { 2, 6 },
                          { 5, 6 } };
    int n = arr.length;
  
    for (int i = 0; i < queries; i++)
        System.out.print(findSum(arr, n, q[i][0], q[i][1])
             +"\n");
}
}
 
// This code is contributed by Princi Singh


Python3




# Python program to find the sum of elements
# of an AP in the given range
 
# Function to find sum in the given range
def findSum(arr, n, left, right):
 
    # Find the value of k
    k = right - left;
 
    # Find the common difference
    d = arr[1] - arr[0];
 
    # Find the sum
    ans = arr[left - 1] * (k + 1);
    ans = ans + (d * (k * (k + 1))) // 2;
 
    return ans;
 
# Driver code
if __name__ == '__main__':
    arr = [ 2, 4, 6, 8, 10, 12, 14, 16 ];
    queries = 3;
    q = [[ 2, 4 ],[ 2, 6 ],[ 5, 6 ]];
    n = len(arr);
 
    for i in range(queries):
        print(findSum(arr, n, q[i][0], q[i][1]));
 
# This code is contributed by sapnasingh4991


C#




// C# program to find the sum of elements
// of an AP in the given range
using System;
 
class GFG{
   
// Function to find sum in the given range
static int findSum(int []arr, int n,
            int left, int right)
{
    // Find the value of k
    int k = right - left;
   
    // Find the common difference
    int d = arr[1] - arr[0];
   
    // Find the sum
    int ans = arr[left - 1] * (k + 1);
    ans = ans + (d * (k * (k + 1))) / 2;
   
    return ans;
}
   
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, 4, 6, 8, 10, 12, 14, 16 };
    int queries = 3;
    int [,]q = { { 2, 4 },
                          { 2, 6 },
                          { 5, 6 } };
    int n = arr.Length;
   
    for (int i = 0; i < queries; i++)
        Console.Write(findSum(arr, n, q[i,0], q[i,1])
             +"\n");
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JavaScript program to find the sum of elements
// of an AP in the given range
 
// Function to find sum in the given range
function findSum(arr, n, left, right)
{
    // Find the value of k
    let k = right - left;
    
    // Find the common difference
    let d = arr[1] - arr[0];
    
    // Find the sum
    let ans = arr[left - 1] * (k + 1);
    ans = ans + (d * (k * (k + 1))) / 2;
    
    return ans;
}
 
// Driver Code
 
    let arr = [ 2, 4, 6, 8, 10, 12, 14, 16 ];
    let queries = 3;
    let q = [[ 2, 4 ],
             [ 2, 6 ],
             [ 5, 6 ]];
    let n = arr.length;
    
    for (let i = 0; i < queries; i++)
        document.write(findSum(arr, n, q[i][0], q[i][1])
             +"<br/>");
     
</script>


Output

18
40
22







Time complexity: O(q), where q is the length of the given queries array. 
Auxiliary Space: O(1)

Method 2: Using Prefix Sum

Approach:

  1. Create a prefix sum array for the given arithmetic series.
  2. For each query, calculate the sum of the range by subtracting the prefix sum at L-1 from the prefix sum at R. 
  3. Output the sum for each query.

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
vector<int> arithmetic_series_sum(int arr[], int N, vector<vector<int>> queries) {
    // precompute prefix sum
    int prefixSum[N];
    prefixSum[0] = arr[0];
    for (int i = 1; i < N; i++) {
        prefixSum[i] = prefixSum[i - 1] + arr[i];
    }
 
    // process queries
    vector<int> ans;
    for (int i = 0; i < queries.size(); i++) {
        int L = queries[i][0];
        int R = queries[i][1];
         int sum = prefixSum[R - 1] - prefixSum[L - 2];
        ans.push_back(sum);
    }
 
    return ans;
}
 
int main() {
    int arr[] = {2, 4, 6, 8, 10, 12, 14, 16};
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // define queries
    vector<vector<int>> queries = {{2, 4},{2, 6},{5, 6}};
 
    // call function to compute arithmetic series sum for queries
    vector<int> ans = arithmetic_series_sum(arr, N, queries);
 
    // print answers
    for (int i = 0; i < ans.size(); i++) {
        cout << ans[i] << endl;
    }
 
    return 0;
}


Java




import java.util.ArrayList;
 
public class GFG {
    public static ArrayList<Integer> arithmeticSeriesSum(
        int[] arr, int N,
        ArrayList<ArrayList<Integer> > queries)
    {
        // Precompute prefix sum
        int[] prefixSum = new int[N];
        prefixSum[0] = arr[0];
        for (int i = 1; i < N; i++) {
            prefixSum[i] = prefixSum[i - 1] + arr[i];
        }
 
        // Process queries
        ArrayList<Integer> ans = new ArrayList<>();
        for (int i = 0; i < queries.size(); i++) {
            int L = queries.get(i).get(0);
            int R = queries.get(i).get(1);
            int sum = prefixSum[R - 1]
                      - (L > 1 ? prefixSum[L - 2] : 0);
            ans.add(sum);
        }
 
        return ans;
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 2, 4, 6, 8, 10, 12, 14, 16 };
        int N = arr.length;
 
        // Define queries
        ArrayList<ArrayList<Integer> > queries
            = new ArrayList<>();
        queries.add(
            new ArrayList<>(java.util.Arrays.asList(2, 4)));
        queries.add(
            new ArrayList<>(java.util.Arrays.asList(2, 6)));
        queries.add(
            new ArrayList<>(java.util.Arrays.asList(5, 6)));
 
        // Call function to compute arithmetic series sum
        // for queries
        ArrayList<Integer> ans
            = arithmeticSeriesSum(arr, N, queries);
 
        // Print answers
        for (int i = 0; i < ans.size(); i++) {
            System.out.println(ans.get(i));
        }
    }
}


Python3




def arithmetic_series_sum(arr, N, queries):
    # precompute prefix sum
    prefixSum = [0] * N
    prefixSum[0] = arr[0]
    for i in range(1, N):
        prefixSum[i] = prefixSum[i - 1] + arr[i]
 
    # process queries
    ans = []
    for i in range(len(queries)):
        L = queries[i][0]
        R = queries[i][1]
        # Compute the sum using prefix sums
        sum = prefixSum[R - 1] - prefixSum[L - 2]
        ans.append(sum)
 
    return ans
 
 
if __name__ == "__main__":
    arr = [2, 4, 6, 8, 10, 12, 14, 16]
    N = len(arr)
 
    # define queries
    queries = [[2, 4], [2, 6], [5, 6]]
 
    # call function to compute arithmetic series sum for queries
    ans = arithmetic_series_sum(arr, N, queries)
 
    # print answers
    for i in range(len(ans)):
        print(ans[i])


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    static List<int> ArithmeticSeriesSum(int[] arr, int N, List<List<int>> queries)
    {
        // precompute prefix sum
        int[] prefixSum = new int[N];
        prefixSum[0] = arr[0];
        for (int i = 1; i < N; i++)
        {
            prefixSum[i] = prefixSum[i - 1] + arr[i];
        }
 
        // process queries
        List<int> ans = new List<int>();
        for (int i = 0; i < queries.Count; i++)
        {
            int L = queries[i][0];
            int R = queries[i][1];
            int sum = prefixSum[R - 1] - (L - 2 >= 0 ? prefixSum[L - 2] : 0);
            ans.Add(sum);
        }
 
        return ans;
    }
 
    static void Main()
    {
        int[] arr = { 2, 4, 6, 8, 10, 12, 14, 16 };
        int N = arr.Length;
 
        // define queries
        List<List<int>> queries = new List<List<int>> {
            new List<int> { 2, 4 },
            new List<int> { 2, 6 },
            new List<int> { 5, 6 }
        };
 
        // call function to compute arithmetic series sum for queries
        List<int> ans = ArithmeticSeriesSum(arr, N, queries);
 
        // print answers
        foreach (int value in ans)
        {
            Console.WriteLine(value);
        }
    }
}


Javascript




function arithmeticSeriesSum(arr, N, queries) {
    // precompute prefix sum
    let prefixSum = [];
    prefixSum[0] = arr[0];
    for (let i = 1; i < N; i++) {
        prefixSum[i] = prefixSum[i - 1] + arr[i];
    }
 
    // process queries
    let ans = [];
    for (let i = 0; i < queries.length; i++) {
        let L = queries[i][0];
        let R = queries[i][1];
        let sum = prefixSum[R - 1] - (L > 1 ? prefixSum[L - 2] : 0);
        ans.push(sum);
    }
 
    return ans;
}
 
let arr = [2, 4, 6, 8, 10, 12, 14, 16];
let N = arr.length;
 
// define queries
let queries = [[2, 4], [2, 6], [5, 6]];
 
// call function to compute arithmetic series sum for queries
let ans = arithmeticSeriesSum(arr, N, queries);
 
// print answers
for (let i = 0; i < ans.length; i++) {
    console.log(ans[i]);
}


Output

18
40
22








Time complexity: O(N + Q),N is the size of the arithmetic series and Q is the number of queries.
Auxiliary Space: O(N) for the prefix sum array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments