Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIVertical order traversal of Binary Tree such that nodes are sorted individually

Vertical order traversal of Binary Tree such that nodes are sorted individually

Given a binary tree, print it vertically. 

NOTE: If there are multiple nodes at the same point, then print them in sorted order.

Examples:

Input:         1
               /    \ 
             2      3
           / \    /   \
        4   11 6    7
                      /  \  
                    8   9  
Output: [ [4], [2], [1, 6, 11], [3, 8], [7], [9] ]
Explanation: Traversing the tree vertically gives the above output.

Input:         5
               /    \ 
             4      6
           / \    /   
        3   1 2
Output: [ [3], [4], [1, 2, 5], [6] ]    

 

Approach: This problem is similar to Print a Binary Tree in Vertical Order. In that problem, if there are 2 nodes on the same vertical and on the same level then it is required to print from left to right, but this problem requires printing it in the sorted order. For that, take queue and map which consists of pair of integer and multiset to store multiple nodes that can have the same value as well.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a binary tree node
struct Node {
    int key;
    Node *left, *right;
};
 
// A utility function to create a new node
struct Node* newNode(int key)
{
    struct Node* node = new Node;
    node->key = key;
    node->left = node->right = NULL;
    return node;
}
 
// Function to print vertical traversal
// of a binary tree
vector<vector<int> > printVerticalOrder(Node* root)
{
 
    // map<vertical, map<level,
    // multiset<node values> > >
    map<int, map<int, multiset<int> > > mpp;
 
    // queue<Nodes, vertical, level>
    queue<pair<Node*, pair<int, int> > > q;
 
    q.push({ root, { 0, 0 } });
 
    while (!q.empty()) {
        auto p = q.front();
        q.pop();
 
        Node* temp = p.first;
 
        // Vertical
        int vertical = p.second.first;
 
        // Level
        int level = p.second.second;
 
        // 2,0 -> {5,6} insert in the multiset
        mpp[vertical][level].insert(temp->key);
 
        // If left child of the node exits
        // then push it on the queue
        // with vertical decremented and
        // level incremented
        if (temp->left)
            q.push({ temp->left,
                     { vertical - 1,
                      level + 1 } });
 
        // If right child of the node exits
        // then push it on the queue
        // with vertical incremented and
        // level incremented
        if (temp->right)
            q.push({ temp->right,
                     { vertical + 1,
                      level + 1 } });
    }
 
    vector<vector<int> > ans;
 
    // Traverse the multiset part of each map
    for (auto p : mpp) {
        vector<int> col;
        for (auto q : p.second) {
            col.insert(col.end(),
                       q.second.begin(),
                       q.second.end());
        }
        ans.push_back(col);
    }
    return ans;
}
 
// Driver Code
int main()
{
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(11);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->left->right = newNode(8);
    root->right->right->right = newNode(9);
 
    // To store the vertical order traversal
    vector<vector<int> > v =
        printVerticalOrder(root);
 
    for (auto i : v) {
        for (auto j : i) {
            cout << j << " ";
        }
        cout << endl;
    }
    return 0;
}


Java




//java program for above approach
 
import java.util.*;
 
// Structure for a binary tree node
class Node {
    int key;
    Node left, right;
 
    Node(int data)
    {
        key = data;
        left = right = null;
    }
}
//custom pair class
class Pair<K, V> {
    private K key;
    private V value;
 
    public Pair(K key, V value)
    {
        this.key = key;
        this.value = value;
    }
 
    public K getKey() { return key; }
 
    public V getValue() { return value; }
 
    public void setKey(K key) { this.key = key; }
 
    public void setValue(V value) { this.value = value; }
}
 
class Main {
    // Function to print vertical traversal
    // of a binary tree
    public static List<List<Integer> >
    printVerticalOrder(Node root)
    { // map<vertical, map<level,
        // multiset<node values> > >
        Map<Integer, Map<Integer, TreeSet<Integer> > > map
            = new TreeMap<>();
        // queue<Nodes, vertical, level>
        Queue<Pair<Node, Pair<Integer, Integer> > > q
            = new LinkedList<>();
        List<List<Integer> > res = new ArrayList<>();
 
        if (root == null)
            return res;
 
        q.add(new Pair<>(root, new Pair<>(0, 0)));
 
        while (!q.isEmpty()) {
            Pair<Node, Pair<Integer, Integer> > p
                = q.peek();
            q.remove();
 
            Node temp = p.getKey();
            int vertical = p.getValue().getKey();
            int level = p.getValue().getValue();
 
            if (!map.containsKey(vertical))
                map.put(vertical, new TreeMap<>());
 
            if (!map.get(vertical).containsKey(level))
                map.get(vertical).put(level,
                                      new TreeSet<>());
 
            map.get(vertical).get(level).add(temp.key);
            // If left child of the node exits
            // then push it on the queue
            // with vertical decremented and
            // level incremented
            if (temp.left != null)
                q.add(new Pair<>(
                    temp.left,
                    new Pair<>(vertical - 1, level + 1)));
            // If right child of the node exits
            // then push it on the queue
            // with vertical incremented and
            // level incremented
            if (temp.right != null)
                q.add(new Pair<>(
                    temp.right,
                    new Pair<>(vertical + 1, level + 1)));
        }
        // Traverse the multiset part of each map
 
        for (Map.Entry<Integer,
                       Map<Integer, TreeSet<Integer> > >
                 entry : map.entrySet()) {
            List<Integer> col = new ArrayList<>();
            for (Map.Entry<Integer, TreeSet<Integer> >
                     values : entry.getValue().entrySet()) {
                col.addAll(values.getValue());
            }
            res.add(col);
        }
 
        return res;
    }
    // Driver Code
 
    public static void main(String[] args)
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(11);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
        root.right.left.right = new Node(8);
        root.right.right.right = new Node(9);
        // To store the vertical order traversal
 
        List<List<Integer> > v = printVerticalOrder(root);
 
        for (List<Integer> i : v) {
            for (Integer j : i) {
                System.out.print(j + " ");
            }
            System.out.println();
        }
    }
}


Python3




# Python program for the above approach
 
from collections import deque
 
# Structure for a binary tree node
class Node:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
 
# Function to print vertical traversal
# of a binary tree
def printVerticalOrder(root):
    # map<vertical, map<level,
    # multiset<node values> > >
    mpp = {}
 
    # queue<Nodes, vertical, level>
    q = deque()
 
    q.append((root, (0, 0)))
 
    while q:
        temp, (vertical, level) = q.popleft()
 
        # 2,0 -> {5,6} insert in the multiset
        if vertical in mpp:
            if level in mpp[vertical]:
                mpp[vertical][level].add(temp.key)
            else:
                mpp[vertical][level] = {temp.key}
        else:
            mpp[vertical] = {level: {temp.key}}
 
        # If left child of the node exits
        # then push it on the queue
        # with vertical decremented and
        # level incremented
        if temp.left:
            q.append((temp.left, (vertical - 1, level + 1)))
 
        # If right child of the node exits
        # then push it on the queue
        # with vertical incremented and
        # level incremented
        if temp.right:
            q.append((temp.right, (vertical + 1, level + 1)))
 
    ans = []
 
    # Traverse the multiset part of each map
    for vertical in sorted(mpp.keys()):
        col = []
        for level in sorted(mpp[vertical].keys()):
            col.extend(sorted(mpp[vertical][level]))
        ans.append(col)
 
    return ans
 
# Driver Code
if __name__ == '__main__':
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(11)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.right.left.right = Node(8)
    root.right.right.right = Node(9)
 
    # To store the vertical order traversal
    v = printVerticalOrder(root)
 
    for i in v:
        for j in i:
            print(j, end=" ")
        print()
# This code is contributed by rishabmalhdjio


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
namespace HelloWorld {
// Structure for a binary tree node
public class Node {
    public int key;
    public Node left, right;
}
 
public class Program {
    // A utility function to create a new node
    public static Node newNode(int key)
    {
        Node node = new Node();
        node.key = key;
        node.left = node.right = null;
        return node;
    }
 
    // Function to print vertical traversal
    // of a binary tree
    public static List<List<int> >
    printVerticalOrder(Node root)
    {
        // map<vertical, map<level,
        // multiset<node values> > >
        SortedDictionary<
            int, SortedDictionary<int, SortedSet<int> > >
            mpp = new SortedDictionary<
                int,
                SortedDictionary<int, SortedSet<int> > >();
 
        // queue<Nodes, vertical, level>
        Queue<Tuple<Node, Tuple<int, int> > > q
            = new Queue<Tuple<Node, Tuple<int, int> > >();
 
        q.Enqueue(new Tuple<Node, Tuple<int, int> >(
            root, new Tuple<int, int>(0, 0)));
 
        while (q.Count > 0) {
            var p = q.Dequeue();
            Node temp = p.Item1;
 
            // Vertical
            int vertical = p.Item2.Item1;
 
            // Level
            int level = p.Item2.Item2;
 
            // 2,0 -> {5,6} insert in the multiset
            if (!mpp.ContainsKey(vertical)) {
                mpp[vertical] = new SortedDictionary<
                    int, SortedSet<int> >();
            }
            if (!mpp[vertical].ContainsKey(level)) {
                mpp[vertical][level] = new SortedSet<int>();
            }
            mpp[vertical][level].Add(temp.key);
 
            // If left child of the node exits
            // then push it on the queue
            // with vertical decremented and
            // level incremented
            if (temp.left != null)
                q.Enqueue(new Tuple<Node, Tuple<int, int> >(
                    temp.left,
                    new Tuple<int, int>(vertical - 1,
                                        level + 1)));
 
            // If right child of the node exits
            // then push it on the queue
            // with vertical incremented and
            // level incremented
            if (temp.right != null)
                q.Enqueue(new Tuple<Node, Tuple<int, int> >(
                    temp.right,
                    new Tuple<int, int>(vertical + 1,
                                        level + 1)));
        }
 
        List<List<int> > ans = new List<List<int> >();
 
        // Traverse the multiset part of each map
        foreach(var p in mpp)
        {
            List<int> col = new List<int>();
            foreach(var qItem in p.Value)
            {
                col.AddRange(qItem.Value);
            }
            ans.Add(col);
        }
        return ans;
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
        root.left.left = newNode(4);
        root.left.right = newNode(11);
        root.right.left = newNode(6);
        root.right.right = newNode(7);
        root.right.left.right = newNode(8);
        root.right.right.right = newNode(9);
 
        // To store the vertical order traversal
        List<List<int> > v = printVerticalOrder(root);
 
        foreach(var i in v)
        {
            foreach(var j in i) { Console.Write(j + " "); }
            Console.WriteLine();
        }
    }
}
}
// This code is contributed by Chetan Bargal


Javascript




// JavaScript program for the above approach
class Node {
    constructor(key) {
        this.key = key;
        this.left = null;
        this.right = null;
    }
}
 
// Function to print vertical traversal
// of a binary tree
function printVerticalOrder(root)
{
 
    // map<vertical, map<level,
    // multiset<node values> > >
    let mpp = new Map();
 
    // queue<Nodes, vertical, level>
    let q = [];
 
    q.push([root, [0, 0]]);
 
    while (q.length) {
        let [temp, [vertical, level]] = q.shift();
         
        // 2,0 -> {5,6} insert in the multiset
        if (mpp.has(vertical)) {
            if (mpp.get(vertical).has(level)) {
                mpp.get(vertical).get(level).add(temp.key);
            } else {
                mpp.get(vertical).set(level, new Set([temp.key]));
            }
        } else {
            mpp.set(vertical, new Map([
                [level, new Set([temp.key])]
            ]));
        }
 
        // If left child of the node exits
        // then push it on the queue
        // with vertical decremented and
        // level incremented
        if (temp.left) {
            q.push([temp.left, [vertical - 1, level + 1]]);
        }
 
        // If right child of the node exits
        // then push it on the queue
        // with vertical incremented and
        // level incremented
        if (temp.right) {
            q.push([temp.right, [vertical + 1, level + 1]]);
        }
    }
 
    let ans = [];
 
    // Traverse the multiset part of each map
    for (let vertical of [...mpp.keys()].sort((a, b) => a - b)) {
        let col = [];
        for (let level of [...mpp.get(vertical).keys()].sort((a, b) => a - b)) {
            col.push(...[...mpp.get(vertical).get(level)].sort((a, b) => a - b));
        }
        ans.push(col);
    }
 
    return ans;
}
 
// Driver Code
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(11);
root.right.left = new Node(6);
root.right.right = new Node(7);
root.right.left.right = new Node(8);
root.right.right.right = new Node(9);
 
// To store the vertical order traversal
let v = printVerticalOrder(root);
 
for (let i of v) {
    console.log(i.join(" "));
}


Output

4 
2 
1 6 11 
3 8 
7 
9 

Time Complexity: O(N*logN*logN*logN) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments