Given a series 1, 17, 98, 354 …… Find the nth term of this series.
The series basically represents the sum of the 4th power of first n natural numbers. First-term is the sum of 14. Second term is sum of two numbers i.e (14 + 24 = 17), third term i.e.(14 + 24 + 34 = 98) and so on.
Examples:
Input : 5 Output : 979 Input : 7 Output : 4676
Naive Approach :
A simple solution is to add the 4th powers of first n natural numbers. By using iteration we can easily find the nth term of the series.
Below is the implementation of the above approach :
C++
// CPP program to find n-th term of // series #include <iostream> using namespace std; // Function to find the nth term of series int sumOfSeries( int n) { // Loop to add 4th powers int ans = 0; for ( int i = 1; i <= n; i++) ans += i * i * i * i; return ans; } // Driver code int main() { int n = 4; cout << sumOfSeries(n); return 0; } |
Java
// Java program to find n-th term of // series import java.io.*; class GFG { // Function to find the nth term of series static int sumOfSeries( int n) { // Loop to add 4th powers int ans = 0 ; for ( int i = 1 ; i <= n; i++) ans += i * i * i * i; return ans; } // Driver code public static void main(String args[]) { int n = 4 ; System.out.println(sumOfSeries(n)); } } |
Python3
# Python 3 program to find # n-th term of # series # Function to find the # nth term of series def sumOfSeries(n) : # Loop to add 4th powers ans = 0 for i in range ( 1 , n + 1 ) : ans = ans + i * i * i * i return ans # Driver code n = 4 print (sumOfSeries(n)) |
C#
// C# program to find n-th term of // series using System; class GFG { // Function to find the // nth term of series static int sumOfSeries( int n) { // Loop to add 4th powers int ans = 0; for ( int i = 1; i <= n; i++) ans += i * i * i * i; return ans; } // Driver code public static void Main() { int n = 4; Console.WriteLine(sumOfSeries(n)); } } // This code is contributed by anuj_67 |
PHP
<?php // PHP program to find // n-th term of series // Function to find the // nth term of series function sumOfSeries( $n ) { // Loop to add 4th powers $ans = 0; for ( $i = 1; $i <= $n ; $i ++) $ans += $i * $i * $i * $i ; return $ans ; } // Driver code $n = 4; echo sumOfSeries( $n ); // This code is contributed // by anuj_67 ?> |
Javascript
<script> // Javascript program to find n-th term of // series // Function to find the nth term of series function sumOfSeries( n) { // Loop to add 4th powers let ans = 0; for (let i = 1; i <= n; i++) ans += i * i * i * i; return ans; } // Driver Code let n = 4; document.write(sumOfSeries(n)); </script> |
354
Time Complexity : O(n).
Auxiliary Space: O(1)
Efficient approach :
The pattern in this series is nth term is equal to the sum of (n-1)th term and n4.
Examples:
n = 2 2nd term equals to sum of 1st term and 24 i.e 16 A2 = A1 + 16 = 1 + 16 = 17 Similarly, A3 = A2 + 34 = 17 + 81 = 98 and so on..
We get:
A(n) = A(n - 1) + n4 = A(n - 2) + n4 + (n-1)4 = A(n - 3) + n4 + (n-1)4 + (n-2)4 . . . = A(1) + 16 + 81... + (n-1)4 + n4 A(n) = 1 + 16 + 81 +... + (n-1)4 + n4 = n(n + 1)(6n3 + 9n2 + n - 1) / 30 i.e A(n) is sum of 4th powers of First n natural numbers.
Below is the implementation of the above approach:
C++
// CPP program to find the n-th // term in series #include <bits/stdc++.h> using namespace std; // Function to find nth term int sumOfSeries( int n) { return n * (n + 1) * (6 * n * n * n + 9 * n * n + n - 1) / 30; } // Driver code int main() { int n = 4; cout << sumOfSeries(n); return 0; } |
Java
// Java program to find the n-th // term in series import java.io.*; class Series { // Function to find nth term static int sumOfSeries( int n) { return n * (n + 1 ) * ( 6 * n * n * n + 9 * n * n + n - 1 ) / 30 ; } // Driver Code public static void main(String[] args) { int n = 4 ; System.out.println(sumOfSeries(n)); } } |
Python
# Python program to find the Nth # term in series # Function to print nth term # of series def sumOfSeries(n): return n * (n + 1 ) * ( 6 * n * n * n + 9 * n * n + n - 1 ) / 30 # Driver code n = 4 print sumOfSeries(n) |
C#
// C# program to find the n-th // term in series using System; class Series { // Function to find nth term static int sumOfSeries( int n) { return n * (n + 1) * (6 * n * n * n + 9 * n * n + n - 1) / 30; } // Driver Code public static void Main() { int n = 4; Console.WriteLine(sumOfSeries(n)); } } // This code is contributed by anuj_67 |
PHP
<?php // PHP program to find the n-th // term in series // Function to find nth term function sumOfSeries( $n ) { return $n * ( $n + 1) * (6 * $n * $n * $n + 9 * $n * $n + $n - 1) / 30; } // Driver code $n = 4; echo sumOfSeries( $n ); // This code is contributed by anuj_67 ?> |
Javascript
<script> // Javascript program to find the n-th term in series // Function to find nth term function sumOfSeries(n) { return n * (n + 1) * (6 * n * n * n + 9 * n * n + n - 1) / 30; } let n = 4; document.write(sumOfSeries(n)); // This code is contributed by divyeshrabadiya07. </script> |
354
Time Complexity : O(1).
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!