Friday, January 10, 2025
Google search engine
HomeData Modelling & AICheck if given intervals can be made non-overlapping by adding/subtracting some X

Check if given intervals can be made non-overlapping by adding/subtracting some X

Given an array arr[] containing N intervals, the task is to check that if the intervals can be added or subtracted by X after which there are no overlapping intervals. Here X be any real number.

Examples: 

Input: arr[] = {[1, 3], [2, 4], [4, 5], [5, 6]} 
Output: YES 
Explanation: 
We can add X = 1000 in 1^{st}            and 3^{rd}            intervals 
ans subtract X = 1000 in 2^{nd}            and 4^{th}            intervals.

Input: arr[] = {[1, 2], [3, 4], [5, 6]} 
Output: YES 
Explanation: 
No intervals are overlapping.

Input: arr[] = {[1, 4], [2, 2], [2, 3]} 
Output: NO 
Explanation: 
There is no possible X such that intervals don’t overlap. 

Approach: The idea is to compare each intervals as a pair with the help of the Nested loops and then for each interval check that they overlap. If any three intervals overlap with each other then there is no way to add any value of X to form Non-overlapping. 
We can find if there is an overlapping in the three intervals with each other using union find or disjoint set data structures.

Below is the implementation of the above approach: 

C++




// C++ implementation to check if the
// intervals can be non-overlapping 
// by adding or subtracting X to
// each interval
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if two intervals 
// overlap with each other
bool checkOverlapping(vector<int> a,
                      vector<int> b)
{
    if (a[0] < b[0])
    {
        a.swap(b);
    }
     
    // Condition to check if the
    // intervals overlap
    if (b[0]<= a[0]<= b[1])
        return true;
         
    return false;
}
  
// Function to check if there 
// is a existing overlapping 
// intervals
int find(int a[], int i)
{
    if (a[i] == i)
        return i;
     
    // Path compression
    a[i] = find(a, a[i]);
    return a[i];
}
           
// Union of two intervals
// Returns True 
// if there is a overlapping 
// with the same another interval
bool Union(int a[], int x, int y)
{
    int xs = find(a, x);
    int ys = find(a, y);
     
    if (xs == ys)
    {
         
        // Both have same
        // another 
        // overlapping interval
        return true;
    }
    a[ys]= xs;
    return false;
}
       
// Function to check if the intervals
// can be added by X to form 
// non-overlapping intervals
bool checkNonOverlapping(vector<vector<int>> arr,
                         int n)
{
    int dsu[n + 1];
    for(int i = 0; i < n + 1; i++)
        dsu[i] = i;
     
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
             
            // If the intervals 
            // overlaps
            // we will union them
            if (checkOverlapping(arr[i], arr[j]))
            {
                if (Union(dsu, i, j))
                {
                    return false;
                }
            }
        }
    }
     
    // There is no cycle
    return true;
}
 
// Driver Code  
int main()
{
    vector<vector<int>> arr ={ { 1, 4 },
                               { 2, 2 },
                               { 2, 3 } };
    int n = arr.size();
     
    if (checkNonOverlapping(arr,n))
    {
        cout << "YES" << endl;
    }
    else
    {
        cout << "NO" << endl;
    }
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java implementation to check if the
// intervals can be non-overlapping by
// by adding or subtracting
// X to each interval
import java.io.*;
import java.util.*;
 
class GFG{
     
// Function to check if two intervals
// overlap with each other
public static Boolean checkOverlapping(
    ArrayList<Integer> a, ArrayList<Integer> b)
{
    if (a.get(0) < b.get(0))
    {
        int temp = a.get(0);
        a.set(0, b.get(0));
        b.set(0, temp);
          
        temp = a.get(1);
        a.set(1, b.get(1));
        b.set(1, temp);
    }
      
    // Condition to check if the
    // intervals overlap
    if (b.get(0) <= a.get(0) &&
        a.get(0) <= b.get(1))
        return true;
         
    return false;
}
 
// Function to check if there
// is a existing overlapping
// intervals
public static int find(ArrayList<Integer> a, int i)
{
    if (a.get(i) == i)
    {
        return i;  
    }
           
    // Path compression
    a.set(i,find(a, a.get(i)));
    return a.get(i);
}
 
// Union of two intervals Returns True.
// If there is a overlapping
// with the same another interval
public static Boolean union(ArrayList<Integer> a,
                            int x, int y)
{
    int xs = find(a, x);
    int ys = find(a, y);
     
    if (xs == ys)
    {
         
        // Both have same
        // another overlapping
        // interval
        return true;
    }
    a.set(ys, xs);
    return false;
}
 
// Function to check if the intervals
// can be added by X to form
// non-overlapping intervals
public static Boolean checkNonOverlapping(
    ArrayList<ArrayList<Integer>> arr, int n)
{
    ArrayList<Integer> dsu = new ArrayList<Integer>();
    for(int i = 0; i < n + 1; i++)
    {
        dsu.add(i);
    }
     
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
             
            // If the intervals
            // overlaps we will
            // union them
            if (checkOverlapping(arr.get(i),
                                 arr.get(j)))
            {
                if (union(dsu, i, j))
                {
                    return false;
                }
            }
        }
    }
              
    // There is no cycle
    return true;
}
 
// Driver Code
public static void main(String[] args)
{
    ArrayList<
    ArrayList<Integer>> arr = new ArrayList<
                                  ArrayList<Integer>>();
    arr.add(new ArrayList<Integer>(Arrays.asList(1, 4)));
    arr.add(new ArrayList<Integer>(Arrays.asList(2, 2)));
    arr.add(new ArrayList<Integer>(Arrays.asList(2, 3)));
     
    int n = arr.size();
     
    if (checkNonOverlapping(arr,n))
    {
        System.out.println("YES");
    }
    else
    {
        System.out.println("NO");
    }
}
}
 
// This code is contributed by avanitrachhadiya2155


Python3




# Python3 implementation to check if
# the intervals can be non-overlapping by
# by adding or subtracting
# X to each interval
 
# Function to check if two intervals
# overlap with each other
def checkOverlapping(a, b):
    a, b = max(a, b), min(a, b)
     
    # Condition to check if the
    # intervals overlap
    if b[0]<= a[0]<= b[1]:
        return True
    return False
 
# Function to check if there
# is a existing overlapping
# intervals
def find(a, i):
    if a[i]== i:
        return i
         
    # Path compression
    a[i]= find(a, a[i])
    return a[i]
 
# Union of two intervals
# Returns True
# if there is a overlapping
# with the same another interval
def union(a, x, y):    
    xs = find(a, x)
    ys = find(a, y)
    if xs == ys:
         
        # Both have same
        # another
        # overlapping interval
        return True
    a[ys]= xs
    return False
     
# Function to check if the intervals
# can be added by X to form
# non-overlapping intervals
def checkNonOverlapping(arr, n):
    dsu =[i for i in range(n + 1)]
    for i in range(n):
        for j in range(i + 1, n):
             
            # If the intervals
            # overlaps
            # we will union them
            if checkOverlapping(arr[i], \
                               arr[j]):
                if union(dsu, i, j):
                    return False
                     
    # There is no cycle
    return True
 
# Driver Code
if __name__ == "__main__":
    arr =[[1, 4], [2, 2], [2, 3]]
    n = len(arr)
    print("YES" if checkNonOverlapping\
       (arr, n) else "NO")


C#




// C# implementation to check if
// the intervals can be non-overlapping by
// by adding or subtracting
// X to each interval
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to check if two intervals
    // overlap with each other
    static bool checkOverlapping(List<int> a, List<int> b)
    {
        if(a[0] < b[0])
        {
            int temp = a[0];
            a[0] = b[0];
            b[0] = temp;
             
            temp = a[1];
            a[1] = b[1];
            b[1] = temp;
        }
          
        // Condition to check if the
        // intervals overlap
        if(b[0] <= a[0] && a[0] <= b[1])
            return true;
        return false;
    }
     
    // Function to check if there
    // is a existing overlapping
    // intervals
    static int find(List<int> a, int i)
    {
        if(a[i] == i)
        {
            return i;  
        }
              
        // Path compression
        a[i] = find(a, a[i]);
        return a[i];
    }
      
    // Union of two intervals
    // Returns True
    // if there is a overlapping
    // with the same another interval
    static bool union(List<int> a, int x, int y)
    {
        int xs = find(a, x);
        int ys = find(a, y);
        if(xs == ys)
        {
            // Both have same
            // another
            // overlapping interval
            return true;
        }
         
        a[ys] = xs;
        return false;
    }
          
    // Function to check if the intervals
    // can be added by X to form
    // non-overlapping intervals
    static bool checkNonOverlapping(List<List<int>> arr, int n)
    {
        List<int> dsu = new List<int>();
        for(int i = 0; i < n + 1; i++)
        {
            dsu.Add(i);
        }
        for(int i = 0; i < n; i++)
        {
            for(int j = i + 1; j < n; j++)
            {
                // If the intervals
                // overlaps
                // we will union them
                if(checkOverlapping(arr[i], arr[j]))
                {
                    if(union(dsu, i, j))
                    {
                        return false;
                    }
                }
            }
        }
                 
        // There is no cycle
        return true;
    }
 
  static void Main() {
    List<List<int>> arr = new List<List<int>>();
    arr.Add(new List<int> { 1, 4 });
    arr.Add(new List<int> { 2, 2 });
    arr.Add(new List<int> { 2, 3 });
     
    int n = arr.Count;
      
    if (checkNonOverlapping(arr,n))
    {
        Console.WriteLine("YES");
    }
    else
    {
        Console.WriteLine("NO");
    }
  }
}
 
// This code is contributed by divyes072019


Javascript




<script>
 
// JavaScript implementation to check if
// the intervals can be non-overlapping by
// by adding or subtracting
// X to each interval
 
// Function to check if two intervals
// overlap with each other
function checkOverlapping(a, b)
{
    if(a[0] < b[0])
    {
        var temp = a[0];
        a[0] = b[0];
        b[0] = temp;
         
        temp = a[1];
        a[1] = b[1];
        b[1] = temp;
    }
      
    // Condition to check if the
    // intervals overlap
    if(b[0] <= a[0] && a[0] <= b[1])
        return true;
    return false;
}
 
// Function to check if there
// is a existing overlapping
// intervals
function find(a, i)
{
    if(a[i] == i)
    {
        return i;  
    }
          
    // Path compression
    a[i] = find(a, a[i]);
    return a[i];
}
  
// Union of two intervals
// Returns True
// if there is a overlapping
// with the same another interval
function union(a, x, y)
{
    var xs = find(a, x);
    var ys = find(a, y);
    if(xs == ys)
    {
        // Both have same
        // another
        // overlapping interval
        return true;
    }
     
    a[ys] = xs;
    return false;
}
      
// Function to check if the intervals
// can be added by X to form
// non-overlapping intervals
function checkNonOverlapping(arr, n)
{
    var dsu = [];
    for(var i = 0; i < n + 1; i++)
    {
        dsu.push(i);
    }
    for(var i = 0; i < n; i++)
    {
        for(var j = i + 1; j < n; j++)
        {
            // If the intervals
            // overlaps
            // we will union them
            if(checkOverlapping(arr[i], arr[j]))
            {
                if(union(dsu, i, j))
                {
                    return false;
                }
            }
        }
    }
             
    // There is no cycle
    return true;
}
 
var arr = Array();
arr.push([1, 4 ]);
arr.push([2, 2 ]);
arr.push([2, 3 ]);
 
var n = arr.length;
  
if (checkNonOverlapping(arr,n))
{
    document.write("YES");
}
else
{
    document.write("NO");
}
 
 
</script>


Output: 

NO

 

Time Complexity: O(n*n*log(n))
Auxiliary Space: O(n),as extra space is used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments