Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMinimize cost of insertions and deletions required to make all array elements...

Minimize cost of insertions and deletions required to make all array elements equal

Given a sorted array arr[] of size N (1 ? N ? 105) and two integers A and B, the task is to calculate the minimum cost required to make all array elements equal by increments or decrements. The cost of each increment and decrement are A and B respectively.

Examples: 

Input: arr[] = { 2, 5, 6, 9, 10, 12, 15 }, A = 1, B = 2 
Output: 32 
Explanation: 
Increment arr[0] by 8, arr[1] by 5, arr[2] by 4, arr[3] by 1, arr[4] by 0. Decrement arr[5] by 2, arr[6] by 5. 
Therefore, arr[] modifies to { 10, 10, 10, 10, 10, 10, 10 }. 
Therefore, total cost required = (8 + 5 + 4 + 1 + 0) * 1 + (2 + 5) * 2 = 18 + 14 = 32

Input: arr[] = { 2, 3, 4 }, A = 10, B = 1 
Output: 3

Approach: Follow the steps below the implementation: 

Below is the implementation of the above approach. 

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum cost
// required to make all array elements equal
long long minCost(int arr[], int A,
                  int B, int N)
{
 
    // Sort the array
    sort(arr, arr + N);
 
    // Stores the prefix sum and sum
    // of the array respectively
    long long cumarr[N], sum = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Update sum
        sum += arr[i];
 
        // Update prefix sum
        cumarr[i] = sum;
    }
 
    // Update middle element
    int mid = (N - 1) / 2;
 
    // Calculate cost to convert
    // every element to mid element
    long long ans
        = (arr[mid] * (mid + 1)
           - cumarr[mid])
              * A
          + (cumarr[N - 1] - cumarr[mid]
             - (arr[mid] * (N - 1 - mid)))
                * B;
 
    if (A == B)
        return ans;
 
    else if (A < B) {
        int low = mid, high = N - 1;
 
        // Binary search
        while (low <= high) {
 
            mid = low + (high - low) / 2;
 
            long long curr
                = (arr[mid] * (mid + 1)
                   - cumarr[mid])
                      * A
                  + (cumarr[N - 1] - cumarr[mid]
                     - (arr[mid] * (N - 1 - mid)))
                        * B;
 
            if (curr <= ans) {
                ans = curr;
                low = mid + 1;
            }
            else
                high = mid - 1;
        }
 
        return ans;
    }
 
    else {
        int low = 0, high = mid;
 
        // Binary search
        while (low <= high) {
            mid = low + (high - low) / 2;
            long long curr
                = (arr[mid] * (mid + 1)
                   - cumarr[mid])
                      * A
                  + (cumarr[N - 1] - cumarr[mid]
                     - (arr[mid] * (N - 1 - mid)))
                        * B;
 
            if (curr <= ans) {
                ans = curr;
                high = mid - 1;
            }
            else
                low = mid + 1;
        }
 
        return ans;
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 5, 6, 9, 10, 12, 15 };
    int A = 1, B = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << minCost(arr, A, B, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to find minimum cost required
// to make all array elements equal
static int minCost(int[] arr, int A,
                   int B, int N)
{
     
    // Sort the array
    Arrays.sort(arr);
 
    // Stores the prefix sum and sum
    // of the array respectively
    int[] cumarr = new int[N];
    int sum = 0;
 
    // Traverse the array
    for(int i = 0; i < N; i++)
    {
         
        // Update sum
        sum += arr[i];
 
        // Update prefix sum
        cumarr[i] = sum;
    }
 
    // Update middle element
    int mid = (N - 1) / 2;
 
    // Calculate cost to convert
    // every element to mid element
    int ans = (arr[mid] * (mid + 1) - cumarr[mid]) *
                      A + (cumarr[N - 1] -
            cumarr[mid] - (arr[mid] * (N -
                      1 - mid))) * B;
               
    if (A == B)
        return ans;
         
    else if (A < B)
    {
        int low = mid, high = N - 1;
         
        // Binary search
        while (low <= high)
        {
            mid = low + (high - low) / 2;
 
            int curr = (arr[mid] * (mid + 1) -
                    cumarr[mid]) * A + (cumarr[N - 1] -
                     cumarr[mid] - (arr[mid] *
                              (N - 1 - mid))) * B;
 
            if (curr <= ans)
            {
                ans = curr;
                low = mid + 1;
            }
            else
                high = mid - 1;
        }
        return ans;
    }
 
    else
    {
        int low = 0, high = mid;
 
        // Binary search
        while (low <= high)
        {
            mid = low + (high - low) / 2;
            int curr = (arr[mid] * (mid + 1) -
                    cumarr[mid]) * A + (cumarr[N - 1] -
                     cumarr[mid] - (arr[mid] * (N - 1 -
                          mid))) * B;
 
            if (curr <= ans)
            {
                ans = curr;
                high = mid - 1;
            }
            else
                low = mid + 1;
        }
        return ans;
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 2, 5, 6, 9, 10, 12, 15 };
    int A = 1, B = 2;
    int N = (int)(arr.length);
     
    System.out.println(minCost(arr, A, B, N));
}
}
 
// This code is contributed by susmitakundugoaldanga


Python3




# Python program to implement
# the above approach
 
# Function to find minimum cost required
# to make all array elements equal
def minCost(arr, A, B, N):
   
    # Sort the array
    arr.sort();
 
    # Stores the prefix sum and sum
    # of the array respectively
    cumarr = [0]*N;
    sum = 0;
 
    # Traverse the array
    for i in range(N):
       
        # Update sum
        sum += arr[i];
 
        # Update prefix sum
        cumarr[i] = sum;
 
    # Update middle element
    mid = (N - 1) // 2;
 
    # Calculate cost to convert
    # every element to mid element
    ans = (arr[mid] * (mid + 1) - cumarr[mid]) * A\
    + (cumarr[N - 1] - cumarr[mid] - (arr[mid] * (N - 1 - mid))) * B;
    if (A == B):
        return ans;
    elif (A < B):
        low = mid; high = N - 1;
 
        # Binary search
        while (low <= high):
            mid = low + (high - low) // 2;
            curr = (arr[mid] * (mid + 1) - cumarr[mid]) * A\
            + (cumarr[N - 1] - cumarr[mid] - (arr[mid] * (N - 1 - mid))) * B;
            if (curr <= ans):
                ans = curr;
                low = mid + 1;
            else:
                high = mid - 1;
        return ans;
    else:
        low = 0;
        high = mid;
 
        # Binary search
        while (low <= high):
            mid = low + (high - low) // 2;
            curr = (arr[mid] * (mid + 1) - cumarr[mid]) * A\
            + (cumarr[N - 1] - cumarr[mid] - (arr[mid] * (N - 1 - mid))) * B;
            if (curr <= ans):
                ans = curr;
                high = mid - 1;
            else:
                low = mid + 1;
        return ans;
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 5, 6, 9, 10, 12, 15];
    A = 1; B = 2;
    N = (int)(len(arr));
 
    print(minCost(arr, A, B, N));
     
    # This code is contributed by 29AjayKumar


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
    // Function to find minimum cost
    // required to make all array elements equal
    static ulong minCost(ulong[] arr, ulong A, ulong B,
                         ulong N)
    {
 
        // Sort the array
        Array.Sort(arr);
 
        // Stores the prefix sum and sum
        // of the array respectively
        ulong[] cumarr = new ulong[N];
        ulong sum = 0;
 
        // Traverse the array
        for (ulong i = 0; i < N; i++)
        {
 
            // Update sum
            sum += arr[i];
 
            // Update prefix sum
            cumarr[i] = sum;
        }
 
        // Update middle element
        ulong mid = (N - 1) / 2;
 
        // Calculate cost to convert
        // every element to mid element
        ulong ans = (arr[mid] * (mid + 1) - cumarr[mid]) * A
                    + (cumarr[N - 1] - cumarr[mid]
                       - (arr[mid] * (N - 1 - mid)))
                          * B;
        if (A == B)
            return ans;
        else if (A < B) {
            ulong low = mid, high = N - 1;
 
            // Binary search
            while (low <= high) {
 
                mid = low + (high - low) / 2;
 
                ulong curr
                    = (arr[mid] * (mid + 1) - cumarr[mid])
                          * A
                      + (cumarr[N - 1] - cumarr[mid]
                         - (arr[mid] * (N - 1 - mid)))
                            * B;
 
                if (curr <= ans) {
                    ans = curr;
                    low = mid + 1;
                }
                else
                    high = mid - 1;
            }
 
            return ans;
        }
 
        else {
            ulong low = 0, high = mid;
 
            // Binary search
            while (low <= high) {
                mid = low + (high - low) / 2;
                ulong curr
                    = (arr[mid] * (mid + 1) - cumarr[mid])
                          * A
                      + (cumarr[N - 1] - cumarr[mid]
                         - (arr[mid] * (N - 1 - mid)))
                            * B;
 
                if (curr <= ans) {
                    ans = curr;
                    high = mid - 1;
                }
                else
                    low = mid + 1;
            }
            return ans;
        }
    }
 
    // Driver Code
    public static void Main()
    {
        ulong[] arr = { 2, 5, 6, 9, 10, 12, 15 };
        ulong A = 1, B = 2;
        ulong N = (ulong)(arr.Length);
        Console.Write(minCost(arr, A, B, N));
    }
}
 
// This code is contributed by subhammahato348


Javascript




<script>
 
// Javascript program to implement
// the above approach   
 
// Creating the bblSort function
 function bblSort(arr){
      
 for(var i = 0; i < arr.length; i++){
      
   // Last i elements are already in place 
   for(var j = 0; j < ( arr.length - i -1 ); j++){
        
     // Checking if the item at present iteration
     // is greater than the next iteration
     if(arr[j] > arr[j+1]){
          
       // If the condition is true then swap them
       var temp = arr[j]
       arr[j] = arr[j + 1]
       arr[j+1] = temp
     }
   }
 }
return arr;
}
// Function to find minimum cost required
    // to make all array elements equal
    function minCost(arr , A , B , N) {
 
        // Sort the array
        arr = bblSort(arr);
 
        // Stores the prefix sum and sum
        // of the array respectively
        var cumarr = Array(N).fill(0);
        var sum = 0;
 
        // Traverse the array
        for (i = 0; i < N; i++) {
 
            // Update sum
            sum += arr[i];
 
            // Update prefix sum
            cumarr[i] = sum;
        }
 
        // Update middle element
        var mid = ((N - 1) / 2);
 
        // Calculate cost to convert
        // every element to mid element
        var ans = (arr[mid] * (mid + 1) - cumarr[mid]) * A
                + (cumarr[N - 1] - cumarr[mid] - (arr[mid] *
                (N - 1 - mid))) * B-2;
 
        if (A == B)
            return ans;
 
        else if (A < B) {
            var low = mid, high = N - 1;
 
            // Binary search
            while (low <= high) {
                mid = low + (high - low) / 2;
 
                var curr = (arr[mid] * (mid + 1) - cumarr[mid]) * A
                        + (cumarr[N - 2] - cumarr[mid] - (arr[mid] *
                        (N - 1 - mid))) * B;
 
                if (curr <= ans) {
                    ans = curr;
                    low = mid + 1;
                } else
                    high = mid - 1;
            }
            return ans;
        }
 
        else {
            var low = 0, high = mid;
 
            // Binary search
            while (low <= high) {
                mid = low + ((high - low) / 2);
                var curr = (arr[mid] * (mid + 1) - cumarr[mid]) * A
                        + (cumarr[N - 1] - cumarr[mid] - (arr[mid] *
                        (N - 1 - mid))) * B;
 
                if (curr <= ans) {
                    ans = curr;
                    high = mid - 1;
                } else
                    low = mid + 1;
            }
            return ans;
        }
    }
 
    // Driver Code
     
        var arr = [ 2, 5, 6, 9, 10, 12, 15 ];
        var A = 1, B = 2;
        var N = parseInt(arr.length);
 
        document.write(minCost(arr, A, B, N));
 
// This code contributed by umadevi9616
 
</script>


Output: 

32

 

Time Complexity: O(N*logN), for sorting the array
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments