Friday, January 10, 2025
Google search engine
HomeData Modelling & AITotal nodes traversed in Euler Tour Tree

Total nodes traversed in Euler Tour Tree

Euler tour of tree has been already discussed which flattens the hierarchical structure of tree into array which contains exactly 2*N-1 values. In this post, the task is to prove that the degree of Euler Tour Tree is 2 times the number of nodes minus one. Here degree means the total number of nodes get traversed in Euler Tour.

Examples: 
 

Input: 
 

Output: 15

Input: 
 

Output: 17 

Explanation: 

Using Example 1:

where

 

It can be seen that each node’s count in Euler Tour is exactly equal to the out-degree of node plus 1. 
Mathematically, it can be represented as: 

$\displaystyle Total=\sum_{node_i=1}^{N} Out_D_e_g[node_i]+1$
$\displaystyle Total= N + \sum_{node_i=1}^{N} Out_D_e_g[node_i]$

Where,
Total represents total number of nodes in Euler Tour Tree node_i     represents ith node in given Tree @N represents the total number of node in given Tree@Out_D_e_g[node_i]     represents number of child of node_i     

Implementation:

C++




// C++ program to check the number of nodes
// in Euler Tour tree.
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 1001
 
// Adjacency list representation of tree
vector<int> adj[MAX];
 
// Function to add edges to tree
void add_edge(int u, int v)
{
    adj[u].push_back(v);
}
 
// Program to check if calculated Value is
// equal to 2*size-1
void checkTotalNumberofNodes(int actualAnswer,
                              int size)
{
    int calculatedAnswer = size;
 
    // Add out-degree of each node
    for (int i = 1; i <= size; i++)
        calculatedAnswer += adj[i].size();
 
    if (actualAnswer == calculatedAnswer)
        cout << "Calculated Answer is " << calculatedAnswer
                     << " and is Equal to Actual Answer\n";
    else
        cout << "Calculated Answer is Incorrect\n";
}
int main()
{ // Constructing 1st tree from example
    int N = 8;
    add_edge(1, 2);
    add_edge(1, 3);
    add_edge(2, 4);
    add_edge(2, 5);
    add_edge(3, 6);
    add_edge(3, 7);
    add_edge(6, 8);
 
    // Out_deg[node[i]] is equal to adj[i].size()
    checkTotalNumberofNodes(2 * N - 1, N);
 
    // clear previous stored tree
    for (int i = 1; i <= N; i++)
        adj[i].clear();
 
    // Constructing 2nd tree from example
    N = 9;
    add_edge(1, 2);
    add_edge(1, 3);
    add_edge(2, 4);
    add_edge(2, 5);
    add_edge(2, 6);
    add_edge(3, 9);
    add_edge(5, 7);
    add_edge(5, 8);
 
    // Out_deg[node[i]] is equal to adj[i].size()
    checkTotalNumberofNodes(2 * N - 1, N);
 
    return 0;
}


Java




// Java program to check the number of nodes
// in Euler Tour tree.
import java.util.*;
 
class GFG
{
    static final int MAX = 1001;
 
    // Adjacency list representation of tree
    static Vector<Integer>[] adj = new Vector[MAX];
 
    // Function to add edges to tree
    static void add_edge(int u, int v)
    {
        adj[u].add(v);
    }
 
    // Program to check if calculated Value is
    // equal to 2*size-1
    static void checkTotalNumberofNodes(int actualAnswer,
                                        int size)
    {
        int calculatedAnswer = size;
 
        // Add out-degree of each node
        for (int i = 1; i <= size; i++)
            calculatedAnswer += adj[i].size();
 
        if (actualAnswer == calculatedAnswer)
            System.out.print("Calculated Answer is " +
                                    calculatedAnswer +
                  " and is Equal to Actual Answer\n");
        else
            System.out.print("Calculated Answer is Incorrect\n");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        for (int i = 0; i < MAX; i++)
            adj[i] = new Vector<Integer>();
             
        // Constructing 1st tree from example
        int N = 8;
        add_edge(1, 2);
        add_edge(1, 3);
        add_edge(2, 4);
        add_edge(2, 5);
        add_edge(3, 6);
        add_edge(3, 7);
        add_edge(6, 8);
 
        // Out_deg[node[i]] is equal to adj[i].size()
        checkTotalNumberofNodes(2 * N - 1, N);
 
        // clear previous stored tree
        for (int i = 1; i <= N; i++)
            adj[i].clear();
 
        // Constructing 2nd tree from example
        N = 9;
        add_edge(1, 2);
        add_edge(1, 3);
        add_edge(2, 4);
        add_edge(2, 5);
        add_edge(2, 6);
        add_edge(3, 9);
        add_edge(5, 7);
        add_edge(5, 8);
 
        // Out_deg[node[i]] is equal to adj[i].size()
        checkTotalNumberofNodes(2 * N - 1, N);
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to check the number
# of nodes in Euler Tour tree.
MAX = 1001;
 
# Adjacency list representation of tree
adj = [list() for _ in range(MAX)]
 
# Function to add edges to tree
def add_edge(u, v):
    l1 = adj[u]
    l1.append(v)
    adj[u] = l1;
 
# Program to check if calculated Value is
# equal to 2*size-1
def checkTotalNumberofNodes(actualAnswer, size) :
    calculatedAnswer = size;
     
    # push out-degree of each node
    for i in range(1, size + 1):
        calculatedAnswer += len(adj[i]);
    if (actualAnswer == calculatedAnswer):
        print("Calculated Answer is", calculatedAnswer, "and is Equal to Actual Answer")
    else:
        print("Calculated Answer is Incorrect");
 
# Driver Code
     
# Constructing 1st tree from example
N = 8;
add_edge(1, 2);
add_edge(1, 3);
add_edge(2, 4);
add_edge(2, 5);
add_edge(3, 6);
add_edge(3, 7);
add_edge(6, 8);
 
# Out_deg[node[i]] is equal to adj[i].Count
checkTotalNumberofNodes(2 * N - 1, N);
 
# clear previous stored tree
for i in range(N + 1):
    adj[i] = []
     
# Constructing 2nd tree from example
N = 9;
add_edge(1, 2);
add_edge(1, 3);
add_edge(2, 4);
add_edge(2, 5);
add_edge(2, 6);
add_edge(3, 9);
add_edge(5, 7);
add_edge(5, 8);
 
# Out_deg[node[i]] is equal to adj[i].Count
checkTotalNumberofNodes(2 * N - 1, N);
 
# This code is contributed by phasing17


C#




// C# program to check the number
// of nodes in Euler Tour tree.
using System;
using System.Collections.Generic;
 
class GFG
{
    static readonly int MAX = 1001;
 
    // Adjacency list representation of tree
    static List<int>[] adj = new List<int>[MAX];
 
    // Function to add edges to tree
    static void add_edge(int u, int v)
    {
        adj[u].Add(v);
    }
 
    // Program to check if calculated Value is
    // equal to 2*size-1
    static void checkTotalNumberofNodes(int actualAnswer,
                                        int size)
    {
        int calculatedAnswer = size;
 
        // Add out-degree of each node
        for (int i = 1; i <= size; i++)
            calculatedAnswer += adj[i].Count;
 
        if (actualAnswer == calculatedAnswer)
            Console.Write("Calculated Answer is " +
                                 calculatedAnswer +
               " and is Equal to Actual Answer\n");
        else
            Console.Write("Calculated Answer " +
                              "is Incorrect\n");
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        for (int i = 0; i < MAX; i++)
            adj[i] = new List<int>();
             
        // Constructing 1st tree from example
        int N = 8;
        add_edge(1, 2);
        add_edge(1, 3);
        add_edge(2, 4);
        add_edge(2, 5);
        add_edge(3, 6);
        add_edge(3, 7);
        add_edge(6, 8);
 
        // Out_deg[node[i]] is equal to adj[i].Count
        checkTotalNumberofNodes(2 * N - 1, N);
 
        // clear previous stored tree
        for (int i = 1; i <= N; i++)
            adj[i].Clear();
 
        // Constructing 2nd tree from example
        N = 9;
        add_edge(1, 2);
        add_edge(1, 3);
        add_edge(2, 4);
        add_edge(2, 5);
        add_edge(2, 6);
        add_edge(3, 9);
        add_edge(5, 7);
        add_edge(5, 8);
 
        // Out_deg[node[i]] is equal to adj[i].Count
        checkTotalNumberofNodes(2 * N - 1, N);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript program to check the number
// of nodes in Euler Tour tree.
var MAX = 1001;
 
// Adjacency list representation of tree
var adj = Array.from(Array(MAX), ()=>Array());
 
// Function to add edges to tree
function add_edge(u, v)
{
    adj[u].push(v);
}
 
// Program to check if calculated Value is
// equal to 2*size-1
function checkTotalNumberofNodes(actualAnswer, size)
{
    var calculatedAnswer = size;
     
    // push out-degree of each node
    for (var i = 1; i <= size; i++)
        calculatedAnswer += adj[i].length;
    if (actualAnswer == calculatedAnswer)
        document.write("Calculated Answer is " +
                             calculatedAnswer +
           " and is Equal to Actual Answer<br>");
    else
        document.write("Calculated Answer " +
                          "is Incorrect<br>");
}
 
// Driver Code
for (var i = 0; i < MAX; i++)
    adj[i] = [];
     
// Constructing 1st tree from example
var N = 8;
add_edge(1, 2);
add_edge(1, 3);
add_edge(2, 4);
add_edge(2, 5);
add_edge(3, 6);
add_edge(3, 7);
add_edge(6, 8);
 
// Out_deg[node[i]] is equal to adj[i].Count
checkTotalNumberofNodes(2 * N - 1, N);
 
// clear previous stored tree
for (var i = 1; i <= N; i++)
    adj[i] = []
     
// Constructing 2nd tree from example
N = 9;
add_edge(1, 2);
add_edge(1, 3);
add_edge(2, 4);
add_edge(2, 5);
add_edge(2, 6);
add_edge(3, 9);
add_edge(5, 7);
add_edge(5, 8);
 
// Out_deg[node[i]] is equal to adj[i].Count
checkTotalNumberofNodes(2 * N - 1, N);
 
// This code is contributed by itsok.
</script>


Output

Calculated Answer is 15 and is Equal to Actual Answer
Calculated Answer is 17 and is Equal to Actual Answer

Time complexity: O(N)
Auxiliary space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments