Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISum of Manhattan distances between repetitions in a String

Sum of Manhattan distances between repetitions in a String

Given a string S of size N consisting of lowercase characters, the task is to find the sum of Manhattan distance between each pair (i, j) such that i?j and S[j] = S[i].

Examples: 

Input: S = “ababa”
Output: 10
Explanation: The pairs having same characters are: (1, 3), (1, 5), (2, 4) and (3, 5). Therefore, the sum of Manhattan distance will be |3 – 1| + |5 – 1| + |4 – 2| + |5 – 3| = 10

Input: S = “abc”
Output: 0

Naive Approach: The simplest approach is to generate all pairs (i, j) using two nested loops and check for each pair, whether it satisfies the given condition or not. If found to be true, add their distances to the answer. After checking all the pairs, print the answer. 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: The approach is similar to finding the Sum of Manhattan distances between all pairs of points. Follow the steps below to solve the problem:

Let the elements of the vector be x1, x2, x3, x4 which represents the indices of the same character.
This character will contribute value = |x2 – x1| + |x3 – x1| + |x4 – x1| + |x3 – x2| + | x4 – x2| + |x4 – x3|  

For a sorted array, this can also be written as (x2 + x3 + x4) – 3*x1 + (x3 + x4) – 2*x2 + (x4) – 1*x3

Now, the sum can also be expressed as ?suffix[i + 1] – (n-i)*xi for i = 1 to n.
where suffix[i+1] is sum of elements from [i+1, n]

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of the manhattan
// distances between same characters in string
void SumofDistances(string s)
{
    // Vector to store indices for each
    // unique character of the string
    vector<int> v[26];
 
    // Append the position of each character
    // in their respective vectors
    for (int i = 0; i < s.size(); i++) {
        v[s[i] - 'a'].push_back(i);
    }
 
    // Store the required result
    int ans = 0;
 
    // Iterate over all the characters
    for (int i = 0; i < 26; i++) {
        int sum = 0;
 
        // Calculate sum of all elements
        // present in the vector
        for (int j = 0; j < v[i].size(); j++) {
            sum += v[i][j];
        }
 
        // Traverse the current vector
        for (int j = 0; j < v[i].size(); j++) {
 
            // Find suffix[i+1]
            sum -= v[i][j];
 
            // Adding distance of all pairs
            // whose first element is i and
            // second element belongs to [i+1, n]
            ans += (sum
                    - (v[i].size() - 1 - j) * (v[i][j]));
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given Input
    string s = "ababa";
 
    // Function Call
    SumofDistances(s);
 
    return 0;
}


Java




// Java program for the above approach
import java.lang.*;
import java.util.*;
 
class GFG{
     
// Function to find the sum of the manhattan
// distances between same characters in string
static void SumofDistances(String s)
{
     
    // Vector to store indices for each
    // unique character of the string
    ArrayList<ArrayList<Integer>> v = new ArrayList<>();
     
    for(int i = 0; i < 26; i++)
        v.add(new ArrayList<>());
 
    // Append the position of each character
    // in their respective vectors
    for(int i = 0; i < s.length(); i++)
    {
        v.get(s.charAt(i) - 'a').add(i);
    }
 
    // Store the required result
    int ans = 0;
 
    // Iterate over all the characters
    for(int i = 0; i < 26; i++)
    {
        int sum = 0;
 
        // Calculate sum of all elements
        // present in the vector
        for(int j = 0; j < v.get(i).size(); j++)
        {
            sum += v.get(i).get(j);
        }
 
        // Traverse the current vector
        for(int j = 0; j < v.get(i).size(); j++)
        {
             
            // Find suffix[i+1]
            sum -= v.get(i).get(j);
 
            // Adding distance of all pairs
            // whose first element is i and
            // second element belongs to [i+1, n]
            ans += (sum - (v.get(i).size() - 1 - j) *
                          (v.get(i).get(j)));
        }
    }
 
    // Print the result
   System.out.println(ans);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    String s = "ababa";
     
    // Function Call
    SumofDistances(s);
}
}
 
// This code is contributed by offbeat


Python3




# Python program for the above approach
 
 
#Function to find the sum of the manhattan
#distances between same characters in string
def SumofDistances(s):
   
    # Vector to store indices for each
    # unique character of the string
    v = [[] for i in range(26)]
 
    # Append the position of each character
    # in their respective vectors
    for i in range(len(s)):
        v[ord(s[i]) - ord('a')].append(i)
 
    # Store the required result
    ans = 0
 
    # Iterate over all the characters
    for i in range(26):
        sum = 0
 
        # Calculate sum of all elements
        # present in the vector
        for j in range(len(v[i])):
            sum += v[i][j]
 
        # Traverse the current vector
        for j in range(len(v[i])):
            # Find suffix[i+1]
            sum -= v[i][j]
 
            # Adding distance of all pairs
            # whose first element is i and
            # second element belongs to [i+1, n]
            ans += (sum - (len(v[i]) - 1 - j) * (v[i][j]))
 
    # Print the result
    print (ans)
 
# Driver Code
if __name__ == '__main__':
    # Given Input
    s = "ababa"
 
    # Function Call
    SumofDistances(s)
 
# This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the sum of the manhattan
// distances between same characters in string
static void SumofDistances(string s)
{
     
    // Vector to store indices for each
    // unique character of the string
    List<int>[] v = new List<int>[26];
    for(int i = 0; i < 26; i++)
      v[i] = new List<int>();
 
    // Append the position of each character
    // in their respective vectors
    for(int i = 0; i < s.Length; i++)
    {
        v[(int)s[i] - 97].Add(i);
    }
 
    // Store the required result
    int ans = 0;
 
    // Iterate over all the characters
    for(int i = 0; i < 26; i++)
    {
        int sum = 0;
 
        // Calculate sum of all elements
        // present in the vector
        for(int j = 0; j < v[i].Count; j++)
        {
            sum += v[i][j];
        }
 
        // Traverse the current vector
        for(int j = 0; j < v[i].Count; j++)
        {
             
            // Find suffix[i+1]
            sum -= v[i][j];
 
            // Adding distance of all pairs
            // whose first element is i and
            // second element belongs to [i+1, n]
            ans += (sum - (v[i].Count - 1 - j) *
                          (v[i][j]));
        }
    }
 
    // Print the result
    Console.Write(ans);
}
 
// Driver Code
public static void Main()
{
     
    // Given Input
    string s = "ababa";
     
    // Function Call
    SumofDistances(s);
}
}
 
// This code is contributed by ipg2016107


Javascript




<script>
// Javascript program for the above approach
 
// Function to find the sum of the manhattan
// distances between same characters in string
function SumofDistances(s)
{
    let v = [];
    for(let i = 0; i < 26; i++)
        v.push([]);
  
    // Append the position of each character
    // in their respective vectors
    for(let i = 0; i < s.length; i++)
    {
        v[s[i].charCodeAt(0) - 'a'.charCodeAt(0)].push(i);
    }
  
    // Store the required result
    let ans = 0;
  
    // Iterate over all the characters
    for(let i = 0; i < 26; i++)
    {
        let sum = 0;
  
        // Calculate sum of all elements
        // present in the vector
        for(let j = 0; j < v[i].length; j++)
        {
            sum += v[i][j];
        }
  
        // Traverse the current vector
        for(let j = 0; j < v[i].length; j++)
        {
              
            // Find suffix[i+1]
            sum -= v[i][j];
  
            // Adding distance of all pairs
            // whose first element is i and
            // second element belongs to [i+1, n]
            ans += (sum - (v[i].length - 1 - j) *
                          (v[i][j]));
        }
    }
  
    // Print the result
   document.write(ans);
}
 
// Driver code
// Given Input
let s = "ababa";
 
// Function Call
SumofDistances(s);
 
// This code is contributed by unknown2108
</script>


Output: 

10

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments