Friday, January 10, 2025
Google search engine
HomeData Modelling & AILargest cube that can be inscribed within a right circular cylinder

Largest cube that can be inscribed within a right circular cylinder

Given here is a right circular cylinder of height h and radius r. The task is to find the volume of biggest cube that can be inscribed within it.
Examples
 

Input: h = 3, r = 2
Output: volume = 27

Input: h = 5, r = 4
Output: volume = 125
 


 

Approach: From the figure, it can be clearly understand that side of the cube = height of the cylinder
So, the volume = (height)^3 
Below is the implementation of the above approach:

C++




// C++ Program to find the biggest cube
// inscribed within a right circular cylinder
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the volume of the cube
float cube(float h, float r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = pow(h, 3);
 
    return a;
}
 
// Driver code
int main()
{
    float h = 5, r = 4;
    cout << cube(h, r) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest cube
// inscribed within a right circular cylinder
class Solution
{
     
 
// Function to find the volume of the cube
static float cube(float h, float r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = (float)Math.pow(h, 3);
 
    return a;
}
 
// Driver code
public static void main(String args[])
{
    float h = 5, r = 4;
    System.out.println( cube(h, r) );
}
}
//contributed by Arnab Kundu


Python 3




# Python 3 Program to find the biggest cube
# inscribed within a right circular cylinder
import math
 
# Function to find the volume of the cube
def cube(h, r):
 
    # height and radius cannot be negative
    if (h < 0 and r < 0):
        return -1
 
    # volume of the cube
    a = math.pow(h, 3)
 
    return a
 
# Driver code
h = 5; r = 4;
print(cube(h, r));
 
# This code is contributed
# by Akanksha Rai


C#




// C# Program to find the biggest
// cube inscribed within a right
// circular cylinder
using System;
                     
class GFG
{
 
// Function to find the volume
// of the cube
static float cube(float h, float r)
{
 
    // height and radius cannot
    // be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    float a = (float)Math.Pow(h, 3);
 
    return a;
}
 
// Driver code
public static void Main()
{
    float h = 5, r = 4;
    Console.Write( cube(h, r) );
}
}
 
// This code is contributed
// by 29AjayKumar


PHP




<?php
// PHP Program to find the biggest 
// cube inscribed within a right
// circular cylinder
 
// Function to find the volume
// of the cube
function cube($h, $r)
{
 
    // height and radius cannot
    // be negative
    if ($h < 0 && $r < 0)
        return -1;
 
    // volume of the cube
    $a = pow($h, 3);
 
    return $a;
}
 
// Driver code
$h = 5;
$r = 4;
echo cube($h, $r);
 
// This code is contributed by @Tushil.
?>


Javascript




<script>
 
// javascript Program to find the biggest cube
// inscribed within a right circular cylinder
 
// Function to find the volume of the cube
function cube(h , r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // volume of the cube
    var a = Math.pow(h, 3);
 
    return a;
}
 
// Driver code
  
var h = 5, r = 4;
document.write( cube(h, r) );
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

125

 

Time Complexity: O(1)
Auxiliary Space: O(1), As we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments