Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIPrint all Proth primes up to N

Print all Proth primes up to N

Given a number N, the task is to check whether the given number is Proth Prime or not. 
A Proth prime is a Proth Number which is prime.
The first few Proth primes are – 
 

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, …..

Examples: 

Input: 41
Output: 41 is Proth Prime

Input: 19
Output: 19 is not a Proth Prime

 

Approach: 
The idea is to find primes upto N using Sieve of Eratosthenes. Then check whether the given number is Proth Number or not. If number is a Proth Number and is also a prime number, then given number is Proth Prime.

Below is the implementation of the above algorithm:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
int prime[1000000];
 
// Calculate all primes upto n.
void SieveOfEratosthenes(int n)
{
    // Initialize all entries it as true.
    // A value in prime[i] will finally
    // false if i is Not a prime, else true.
    for (int i = 1; i <= n + 1; i++)
        prime[i] = true;
 
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            // greater than or equal to
            // the square of it numbers
            // which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Utility function to check power of two
bool isPowerOfTwo(int n)
{
    return (n && !(n & (n - 1)));
}
 
// Function to check if the Given
// number is Proth number or not
bool isProthNumber(int n)
{
 
    int k = 1;
    while (k < (n / k)) {
 
        // check if k divides n or not
        if (n % k == 0) {
 
            // Check if n/k is power of 2 or not
            if (isPowerOfTwo(n / k))
                return true;
        }
 
        // update k to next odd number
        k = k + 2;
    }
 
    // If we reach here means there
    // exists no value of K such
    // that k is odd number and n/k
    // is a power of 2 greater than k
    return false;
}
 
// Function to check whether the given
// number is Proth Prime or Not.
bool isProthPrime(int n)
{
    // Check n for Proth Number
    if (isProthNumber(n - 1)) {
 
        // if number is prime, return true
        if (prime[n])
            return true;
        else
            return false;
    }
    else
        return false;
}
 
// Driver Code
int main()
{
    int n = 41;
 
    // if number is proth number,
    // calculate primes upto n
    SieveOfEratosthenes(n);
 
    for (int i = 1; i <= n; i++)
        // Check n for Proth Prime
        if (isProthPrime(i))
            cout << i << endl;
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
 
static boolean[] prime = new boolean[1000000];
 
// Calculate all primes upto n.
static void SieveOfEratosthenes(int n)
{
    // Initialize all entries it as true.
    // A value in prime[i] will finally
    // false if i is Not a prime, else true.
    for (int i = 1; i <= n + 1; i++)
        prime[i] = true;
 
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            // greater than or equal to
            // the square of it numbers
            // which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Utility function to check power of two
static boolean isPowerOfTwo(int n)
{
    return (n > 0 && (n & (n - 1)) == 0);
}
 
// Function to check if the Given
// number is Proth number or not
static boolean isProthNumber(int n)
{
 
    int k = 1;
    while (k < (int)(n / k))
    {
 
        // check if k divides n or not
        if (n % k == 0)
        {
 
            // Check if n/k is power of 2 or not
            if (isPowerOfTwo((int)(n / k)))
                return true;
        }
 
        // update k to next odd number
        k = k + 2;
    }
 
    // If we reach here means there
    // exists no value of K such
    // that k is odd number and n/k
    // is a power of 2 greater than k
    return false;
}
 
// Function to check whether the given
// number is Proth Prime or Not.
static boolean isProthPrime(int n)
{
    // Check n for Proth Number
    if (isProthNumber(n - 1))
    {
 
        // if number is prime, return true
        if (prime[n])
            return true;
        else
            return false;
    }
    else
        return false;
}
 
// Driver Code
public static void main(String args[])
{
    int n = 41;
 
    // if number is proth number,
    // calculate primes upto n
    SieveOfEratosthenes(n);
 
    for (int i = 1; i <= n; i++)
        // Check n for Proth Prime
        if (isProthPrime(i))
            System.out.println(i);
}
}
 
// This code is contributed by
// Surendra_Gangwar


Python3




# Python3 implementation of the
# above approach
import math as mt
 
prime = [0 for i in range(1000000)]
 
# Calculate all primes upto n.
def SieveOfEratosthenes(n):
     
    # Initialize all entries it as true.
    # A value in prime[i] will finally
    # false if i is Not a prime, else true.
    for i in range(1, n + 2):
        prime[i] = True
 
    prime[1] = False
 
    for p in range(2, mt.ceil(n**(0.5))):
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            # greater than or equal to
            # the square of it numbers
            # which are multiple of p and are
            # less than p^2 are already been marked.
            for i in range(p * p, n + 1, p):
                prime[i] = False
 
# Utility function to check power of two
def isPowerOfTwo(n):
    return (n and (n & (n - 1)) == False)
 
# Function to check if the Given
# number is Proth number or not
def isProthNumber(n):
     
    k = 1
    while (k < (n // k)):
 
        # check if k divides n or not
        if (n % k == 0):
 
            # Check if n/k is power of 2 or not
            if (isPowerOfTwo(n // k)):
                return True
         
        # update k to next odd number
        k = k + 2
     
    # If we reach here means there
    # exists no value of K such
    # that k is odd number and n/k
    # is a power of 2 greater than k
    return False
 
# Function to check whether the given
# number is Proth Prime or Not.
def isProthPrime(n):
 
    # Check n for Proth Number
    if (isProthNumber(n - 1)):
 
        # if number is prime, return true
        if (prime[n]):
            return True
        else:
            return False
     
    else:
        return False
 
# Driver Code
n = 41
 
# if number is proth number,
# calculate primes upto n
SieveOfEratosthenes(n)
 
for i in range(1, n + 1):
     
    # Check n for Proth Prime
    if isProthPrime(i) == True:
        print(i)
         
# This code is contributed by
# Mohit kumar 29


C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
static Boolean[] prime = new Boolean[1000000];
 
// Calculate all primes upto n.
static void SieveOfEratosthenes(int n)
{
    // Initialize all entries it as true.
    // A value in prime[i] will finally
    // false if i is Not a prime, else true.
    for (int i = 1; i <= n + 1; i++)
        prime[i] = true;
 
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            // greater than or equal to
            // the square of it numbers
            // which are multiple of p and are
            // less than p^2 are already been marked.
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Utility function to check power of two
static Boolean isPowerOfTwo(int n)
{
    return (n > 0 && (n & (n - 1)) == 0);
}
 
// Function to check if the Given
// number is Proth number or not
static Boolean isProthNumber(int n)
{
 
    int k = 1;
    while (k < (int)(n / k))
    {
 
        // check if k divides n or not
        if (n % k == 0)
        {
 
            // Check if n/k is power of 2 or not
            if (isPowerOfTwo((int)(n / k)))
                return true;
        }
 
        // update k to next odd number
        k = k + 2;
    }
 
    // If we reach here means there
    // exists no value of K such
    // that k is odd number and n/k
    // is a power of 2 greater than k
    return false;
}
 
// Function to check whether the given
// number is Proth Prime or Not.
static Boolean isProthPrime(int n)
{
    // Check n for Proth Number
    if (isProthNumber(n - 1))
    {
 
        // if number is prime, return true
        if (prime[n])
            return true;
        else
            return false;
    }
    else
        return false;
}
 
// Driver Code
static public void Main(String []args)
{
    int n = 41;
 
    // if number is proth number,
    // calculate primes upto n
    SieveOfEratosthenes(n);
 
    for (int i = 1; i <= n; i++)
     
        // Check n for Proth Prime
        if (isProthPrime(i))
            Console.WriteLine(i);
}
}
 
// This code is contributed by Arnab Kundu


PHP




<?php
// PHP implementation of the above approach
$GLOBALS['prime'] = array();
 
// Calculate all primes upto n.
function SieveOfEratosthenes($n)
{
    // Initialize all entries it as true.
    // A value in prime[i] will finally
    // false if i is Not a prime, else true.
    for ($i = 1; $i <= $n + 1; $i++)
        $GLOBALS['prime'][$i] = true;
 
    $GLOBALS['prime'][1] = false;
 
    for ($p = 2; $p * $p <= $n; $p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if ($GLOBALS['prime'][$p] == true)
        {
 
            // Update all multiples of p greater 
            // than or equal to the square of it 
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for ($i = $p * $p; $i <= $n; $i += $p)
                $GLOBALS['prime'][$i] = false;
        }
    }
}
 
// Utility function to check power of two
function isPowerOfTwo($n)
{
    return ($n && !($n & ($n - 1)));
}
 
// Function to check if the Given
// number is Proth number or not
function isProthNumber($n)
{
    $k = 1;
    while ($k < ($n / $k))
    {
 
        // check if k divides n or not
        if ($n % $k == 0)
        {
 
            // Check if n/k is power of 2 or not
            if (isPowerOfTwo($n / $k))
                return true;
        }
 
        // update k to next odd number
        $k = $k + 2;
    }
 
    // If we reach here means there
    // exists no value of K such
    // that k is odd number and n/k
    // is a power of 2 greater than k
    return false;
}
 
// Function to check whether the given
// number is Proth Prime or Not.
function isProthPrime($n)
{
    // Check n for Proth Number
    if (isProthNumber($n - 1))
    {
 
        // if number is prime, return true
        if ($GLOBALS['prime'][$n])
            return true;
        else
            return false;
    }
    else
        return false;
}
 
// Driver Code
$n = 41;
 
// if number is proth number,
// calculate primes upto n
SieveOfEratosthenes($n);
 
for ($i = 1; $i <= $n; $i++)
 
    // Check n for Proth Prime
    if (isProthPrime($i) == true)
        echo $i, "\n";
 
// This code is contributed by Ryuga
?>


Javascript




<script>
// Javascript implementation of the above approach
let prime = new Array();
 
// Calculate all primes upto n.
function SieveOfEratosthenes(n)
{
    // Initialize all entries it as true.
    // A value in prime[i] will finally
    // false if i is Not a prime, else true.
    for (let i = 1; i <= n + 1; i++)
        prime[i] = true;
 
    prime[1] = false;
 
    for (let p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p greater
            // than or equal to the square of it
            // numbers which are multiple of p and are
            // less than p^2 are already been marked.
            for (let i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Utility function to check power of two
function isPowerOfTwo(n)
{
    return (n && !(n & (n - 1)));
}
 
// Function to check if the Given
// number is Proth number or not
function isProthNumber(n)
{
    let k = 1;
    while (k < (n / k))
    {
 
        // check if k divides n or not
        if (n % k == 0)
        {
 
            // Check if n/k is power of 2 or not
            if (isPowerOfTwo(n / k))
                return true;
        }
 
        // update k to next odd number
        k = k + 2;
    }
 
    // If we reach here means there
    // exists no value of K such
    // that k is odd number and n/k
    // is a power of 2 greater than k
    return false;
}
 
// Function to check whether the given
// number is Proth Prime or Not.
function isProthPrime(n)
{
    // Check n for Proth Number
    if (isProthNumber(n - 1))
    {
 
        // if number is prime, return true
        if (prime[n])
            return true;
        else
            return false;
    }
    else
        return false;
}
 
// Driver Code
let n = 41;
 
// if number is proth number,
// calculate primes upto n
SieveOfEratosthenes(n);
 
for (let i = 1; i <= n; i++)
 
    // Check n for Proth Prime
    if (isProthPrime(i) == true)
        document.write(i + "<br>");
 
// This code is contributed by gfgking
</script>


Output: 

3
5
13
17
41

 

Time Complexity: O(n*log(log(n)))
Auxiliary Space: O(1), constant extra space is required as the size of the prime array is constant.
References: 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments