Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AILength of largest sub-array having primes strictly greater than non-primes

Length of largest sub-array having primes strictly greater than non-primes

Given an array ‘arr’ of length ‘n’. The task is to find the largest contiguous sub-array having the count of prime numbers strictly greater than the count of non-prime numbers. 

Examples

Input: arr[] = {4, 7, 4, 7, 11, 5, 4, 4, 4, 5}
Output: 9

Input:  arr[] = { 1, 9, 3, 4, 5, 6, 7, 8 }
Output: 5

Approach: To find the largest subarray in which count of prime is strictly greater than the count of non-prime: 
First of all, use sieve to find the prime number. 
Replace all primes with 1 in the array and all non-primes with -1. Now this problem is similar to Longest subarray having count of 1s one more than count of 0s 

Below is the implementation of the above approach: 

C++




// C++ implementation of above approach
 
#include <bits/stdc++.h>
using namespace std;
 
bool prime[1000000 + 5];
 
void findPrime()
{
    memset(prime, true, sizeof(prime));
    prime[1] = false;
 
    for (int p = 2; p * p <= 1000000; p++) {
 
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= 1000000; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the length of longest
// subarray having count of primes more
// than count of non-primes
int lenOfLongSubarr(int arr[], int n)
{
    // unordered_map 'um' implemented as
    // hash table
    unordered_map<int, int> um;
    int sum = 0, maxLen = 0;
 
    // traverse the given array
    for (int i = 0; i < n; i++) {
 
        // consider -1 as non primes and 1 as primes
        sum += prime[arr[i]] == 0 ? -1 : 1;
 
        // when subarray starts form index '0'
        if (sum == 1)
            maxLen = i + 1;
 
        // make an entry for 'sum' if it is
        // not present in 'um'
        else if (um.find(sum) == um.end())
            um[sum] = i;
 
        // check if 'sum-1' is present in 'um'
        // or not
        if (um.find(sum - 1) != um.end()) {
 
            // update maxLength
            if (maxLen < (i - um[sum - 1]))
                maxLen = i - um[sum - 1];
        }
    }
 
    // required maximum length
    return maxLen;
}
 
// Driver code
int main()
{
    findPrime();
 
    int arr[] = { 1, 9, 3, 4, 5, 6, 7, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << lenOfLongSubarr(arr, n) << endl;
    return 0;
}


Java




// Java implementation of above approach
 
import java.util.*;
class GfG {
    static boolean prime[] = new boolean[1000000 + 5];
 
    static void findPrime()
    {
        Arrays.fill(prime, true);
        prime[1] = false;
 
        for (int p = 2; p * p <= 1000000; p++) {
 
            // If prime[p] is not changed, then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i <= 1000000; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to find the length of longest
    // subarray having count of primes more
    // than count of non-primes
    static int lenOfLongSubarr(int arr[], int n)
    {
        // unordered_map 'um' implemented as
        // hash table
        Map<Integer, Integer> um = new HashMap<Integer, Integer>();
        int sum = 0, maxLen = 0;
 
        // traverse the given array
        for (int i = 0; i < n; i++) {
 
            // consider -1 as non primes and 1 as primes
            sum += prime[arr[i]] == false ? -1 : 1;
 
            // when subarray starts form index '0'
            if (sum == 1)
                maxLen = i + 1;
 
            // make an entry for 'sum' if it is
            // not present in 'um'
            else if (!um.containsKey(sum))
                um.put(sum, i);
 
            // check if 'sum-1' is present in 'um'
            // or not
            if (um.containsKey(sum - 1)) {
 
                // update maxLength
                if (maxLen < (i - um.get(sum - 1)))
                    maxLen = i - um.get(sum - 1);
            }
        }
 
        // required maximum length
        return maxLen;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        findPrime();
 
        int arr[] = { 1, 9, 3, 4, 5, 6, 7, 8 };
        int n = arr.length;
 
        System.out.println(lenOfLongSubarr(arr, n));
    }
}


Python3




# Python3 implementation of above approach
 
prime = [True] * (1000000 + 5)
 
def findPrime():
 
    prime[0], prime[1] = False, False
 
    for p in range(2, 1001):
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p] == True:
 
            # Update all multiples of p
            for i in range(p * 2, 1000001, p):
                prime[i] = False
 
# Function to find the length of longest
# subarray having count of primes more
# than count of non-primes
def lenOfLongSubarr(arr, n):
 
    # unordered_map 'um' implemented as
    # hash table
    um = {}
    Sum, maxLen = 0, 0
 
    # traverse the given array
    for i in range(0, n):
 
        # consider -1 as non primes and 1 as primes
        Sum = Sum-1 if prime[arr[i]] == False else Sum + 1
         
        # when subarray starts form index '0'
        if Sum == 1:
            maxLen = i + 1
 
        # make an entry for 'sum' if
        # it is not present in 'um'
        elif Sum not in um:
            um[Sum] = i
 
        # check if 'sum-1' is present
        # in 'um' or not
        if (Sum - 1) in um:
 
            # update maxLength
            if maxLen < (i - um[Sum - 1]):
                maxLen = i - um[Sum - 1]
 
    # required maximum length
    return maxLen
 
# Driver Code
if __name__ == "__main__":
 
    findPrime()
 
    arr = [1, 9, 3, 4, 5, 6, 7, 8]
    n = len(arr)
 
    print(lenOfLongSubarr(arr, n))
 
# This code is contributed
# by Rituraj Jain


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GfG {
 
    static bool[] prime = new bool[1000000 + 5];
 
    static void findPrime()
    {
        Array.Fill(prime, true);
        prime[1] = false;
 
        for (int p = 2; p * p <= 1000000; p++) {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i <= 1000000; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to find the length of longest
    // subarray having count of primes more
    // than count of non-primes
    static int lenOfLongSubarr(int[] arr, int n)
    {
        // unordered_map 'um' implemented as
        // hash table
        Dictionary<int, int> um = new Dictionary<int, int>();
        int sum = 0, maxLen = 0;
 
        // traverse the given array
        for (int i = 0; i < n; i++) {
 
            // consider -1 as non primes and 1 as primes
            sum += prime[arr[i]] == false ? -1 : 1;
 
            // when subarray starts form index '0'
            if (sum == 1)
                maxLen = i + 1;
 
            // make an entry for 'sum' if it is
            // not present in 'um'
            else if (!um.ContainsKey(sum))
                um[sum] = i;
 
            // check if 'sum-1' is present in 'um'
            // or not
            if (um.ContainsKey(sum - 1)) {
 
                // update maxLength
                if (maxLen < (i - um[sum - 1]))
                    maxLen = i - um[sum - 1];
            }
        }
 
        // required maximum length
        return maxLen;
    }
 
    // Driver code
    public static void Main()
    {
        findPrime();
 
        int[] arr = { 1, 9, 3, 4, 5, 6, 7, 8 };
        int n = arr.Length;
 
        Console.WriteLine(lenOfLongSubarr(arr, n));
    }
}
 
// This code is contributed by Code_Mech.


Javascript




<script>
// Javascript implementation of above approach
 
let prime = new Array(1000000 + 5);
 
function findPrime() {
    prime.fill(true)
    prime[1] = false;
 
    for (let p = 2; p * p <= 1000000; p++) {
 
        // If prime[p] is not changed, then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (let i = p * 2; i <= 1000000; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find the length of longest
// subarray having count of primes more
// than count of non-primes
function lenOfLongSubarr(arr, n) {
    // unordered_map 'um' implemented as
    // hash table
    let um = new Map();
    let sum = 0, maxLen = 0;
 
    // traverse the given array
    for (let i = 0; i < n; i++) {
 
        // consider -1 as non primes and 1 as primes
        sum += prime[arr[i]] == 0 ? -1 : 1;
 
        // when subarray starts form index '0'
        if (sum == 1)
            maxLen = i + 1;
 
        // make an entry for 'sum' if it is
        // not present in 'um'
        else if (!um.has(sum))
            um.set(sum, i);
 
        // check if 'sum-1' is present in 'um'
        // or not
        if (um.has(sum - 1)) {
 
            // update maxLength
            if (maxLen < (i - um.get(sum - 1)))
                maxLen = i - um.get(sum - 1);
        }
    }
 
    // required maximum length
    return maxLen;
}
 
// Driver code
 
findPrime();
let arr = [1, 9, 3, 4, 5, 6, 7, 8];
let n = arr.length;
document.write(lenOfLongSubarr(arr, n) + "<br>")
 
// This code is contributed by Saurabh Jaiswal
</script>


Output: 

5

 

Time Complexity: O(P*log(log(P))  + N), where P is the upper range up to which prime numbers are needed to be calculated during preprocessing and N is the length of the given array. 
Auxiliary Space: O(P + N), where P is the hardcoded length of the prime array (1000000 + 5). 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments