Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount pairs of coordinates connected by a line with slope in the...

Count pairs of coordinates connected by a line with slope in the range [-K, K]

Given an integer K, and two arrays X[] and Y[] both consisting of N integers, where (X[i], Y[i]) is a coordinate in a plane, the task is to find the total number of pairs of points such that the line passing through them has a slope in the range [-K, K].

Examples:

Input: X[] = {2, 1, 0}, Y[] = {1, 2, 0}, K = 1
Output: 2
Explanation:
The set of pairs satisfying the given condition are [(0, 0), (2, 1)] and [(1, 2), (2, 1)].

Input: X[] = {2, 4}, Y[][] = {5, 6}, K = 1
Output: 1

Approach: The idea is to traverse through all pairs of points and check whether their slope lies in the range [-K, K] or not. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of pairs
// of points such that the line passing
// through them has a slope in the range[-k, k]
void findPairs(vector<int> x, vector<int> y,
               int K)
{
    int n = x.size();
 
    // Store the result
    int ans = 0;
 
    // Traverse through all the
    // combination of points
    for (int i = 0; i < n; ++i) {
 
        for (int j = i + 1; j < n; ++j) {
 
            // If pair satisfies
            // the given condition
            if (K * abs(x[i] - x[j])
                >= abs(y[i] - y[j])) {
 
                // Increment ans by 1
                ++ans;
            }
        }
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    vector<int> X = { 2, 1, 0 },
                Y = { 1, 2, 0 };
    int K = 1;
 
    // Function Call
    findPairs(X, Y, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to find the number of pairs
// of points such that the line passing
// through them has a slope in the range[-k, k]
static void findPairs(int[] x, int[] y,
               int K)
{
    int n = x.length;
 
    // Store the result
    int ans = 0;
 
    // Traverse through all the
    // combination of points
    for (int i = 0; i < n; ++i) {
 
        for (int j = i + 1; j < n; ++j) {
 
            // If pair satisfies
            // the given condition
            if (K * Math.abs(x[i] - x[j])
                >= Math.abs(y[i] - y[j])) {
 
                // Increment ans by 1
                ++ans;
            }
        }
    }
 
    // Print the result
    System.out.print(ans);
}
 
 
// Driven Code
public static void main(String[] args)
{
    int[] X = { 2, 1, 0 };
    int[] Y = { 1, 2, 0 };
    int K = 1;
 
    // Function Call
    findPairs(X, Y, K);
}
}
 
// This code is contributed by sanjoy_62.


Python3




# Python3 program for the above approach
 
# Function to find the number of pairs
# of points such that the line passing
# through them has a slope in the range[-k, k]
def findPairs(x, y, K):
    n = len(x)
 
    # Store the result
    ans = 0
 
    # Traverse through all the
    # combination of points
    for i in range(n):
        for j in range(i + 1, n):
           
            # If pair satisfies
            # the given condition
            if (K * abs(x[i] - x[j]) >= abs(y[i] - y[j])):
               
                # Increment ans by 1
                ans += 1
 
    # Print the result
    print (ans)
 
# Driver Code
if __name__ == '__main__':
    X = [2, 1, 0]
    Y = [1, 2, 0]
    K = 1
 
    # Function Call
    findPairs(X, Y, K)
 
 # This code is contributed by mohit kumar 29.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the number of pairs
// of points such that the line passing
// through them has a slope in the range[-k, k]
static void findPairs(int[] x, int[] y,
                      int K)
{
    int n = x.Length;
 
    // Store the result
    int ans = 0;
 
    // Traverse through all the
    // combination of points
    for(int i = 0; i < n; ++i)
    {
        for(int j = i + 1; j < n; ++j)
        {
             
            // If pair satisfies
            // the given condition
            if (K * Math.Abs(x[i] - x[j]) >=
                    Math.Abs(y[i] - y[j]))
            {
                 
                // Increment ans by 1
                ++ans;
            }
        }
    }
 
    // Print the result
    Console.WriteLine(ans);
}
 
// Driver Code
public static void Main(String []args)
{
    int[] X = { 2, 1, 0 };
    int[] Y = { 1, 2, 0 };
    int K = 1;
 
    // Function Call
    findPairs(X, Y, K);
}
}
 
// This code is contributed by souravghosh0416


Javascript




<script>
    // Javascript program for the above approach
     
    // Function to find the number of pairs
    // of points such that the line passing
    // through them has a slope in the range[-k, k]
    function findPairs(x, y, K)
    {
        let n = x.length;
 
        // Store the result
        let ans = 0;
 
        // Traverse through all the
        // combination of points
        for (let i = 0; i < n; ++i) {
 
            for (let j = i + 1; j < n; ++j) {
 
                // If pair satisfies
                // the given condition
                if (K * Math.abs(x[i] - x[j])
                    >= Math.abs(y[i] - y[j])) {
 
                    // Increment ans by 1
                    ++ans;
                }
            }
        }
 
        // Print the result
        document.write(ans);
    }
 
  // Driver code
    let X = [ 2, 1, 0 ], Y = [ 1, 2, 0 ];
    let K = 1;
  
    // Function Call
    findPairs(X, Y, K);
     
    // This code is contributed by divyesh072019.
</script>


Output: 

2

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments