Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIMinimum value to be added at each level in Binary Tree to...

Minimum value to be added at each level in Binary Tree to make all level sum equal

Given a binary tree, the task is to find all minimum values greater than or equal to zero, that should be added at each level to make the sum at each level equal.

Examples:

Input:
              1
           /    \
        2        3
     /  \     
  4     5  
Output: 8 4 0
Explanation: Initial sum at each level is {1, 5, 9}. To make all levels sum equal minimum values to be added are {8, 4, 0}. So the final sums at each level becomes {1 + 8, 5 + 4, 9 + 0} i.e. {9, 9, 9}.

Input:
              8
           /    \
        3       10
     /  \          \
  1     6          14 
       /  \        /
     4    7    13
Output: 16 11 3 0

 

Approach: The given problem can be solved by finding the maximum level sum in a binary tree. By the greedy approach, the minimum value that should be added at each level must be equal to the difference between the sum of that level in the binary tree with the maximum level sum in a binary tree. 

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Node class
class Node {
public:
    int data;
    Node *left, *right;
    Node(int item)
    {
        data = item;
        left = right = NULL;
    }
};
 
// Function to find sum of nodes
// present in a single level.
void Utilfun(Node* root, int level, vector<int>& ans)
{
    if (root == NULL) {
        return;
    }
 
    // Adding the data
    // of all the level
    if (ans.size() == level) {
        ans.push_back(root->data);
    }
 
    // If previous node data is already
    // then update ans
    else {
        int val = ans[level] + root->data;
        ans[level] = val;
    }
 
    // Basic dfs approach to traverse
    // on all the nodes with next level
    Utilfun(root->left, level + 1, ans);
    Utilfun(root->right, level + 1, ans);
}
 
// Function to find the minimum
// value added to make each level
// sum equal
vector<int>
levelOrderAP(Node* root)
{
 
    // Initialization of array
    vector<int> finalAns;
 
    // If root is null
    if (root == NULL) {
        return finalAns;
    }
 
    // Function Call
    Utilfun(root, 0, finalAns);
    int maxi = INT_MIN;
 
    // finding the maximum element
    for (int ele : finalAns) {
        maxi = max(maxi, ele);
    }
    // Subtracting all the elements
    // from maximum elements
    for (int i = 0; i < finalAns.size(); i++) {
        int val = maxi - finalAns[i];
        finalAns[i] = val;
    }
    return finalAns;
}
 
// Driver Code
int main()
{
    Node* root = new Node(8);
    root->left = new Node(3);
    root->right = new Node(10);
    root->left->left = new Node(1);
    root->left->right = new Node(6);
    root->right->right = new Node(14);
    root->left->right->left = new Node(4);
    root->left->right->right = new Node(7);
    root->right->right->left = new Node(13);
 
    vector<int> ans = levelOrderAP(root);
    for (auto i : ans) {
        cout << i << " ";
    }
    return 0;
}
 
// This code is contributed by maddler.


Java




// Java program for the above approach
import java.util.*;
 
// Node class
class Node {
    int data;
    Node left, right;
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
// Binary tree class
class BinaryTree {
    Node root;
    public BinaryTree()
    {
        root = null;
    }
 
    // Function to find the minimum
    // value added to make each level
    // sum equal
    static ArrayList<Integer> levelOrderAP(Node root)
    {
 
        // Initialization of array
        ArrayList<Integer> finalAns = new ArrayList<>();
 
        // If root is null
        if (root == null) {
            return finalAns;
        }
 
        // Function Call
        Utilfun(root, 0, finalAns);
        int maxi = Integer.MIN_VALUE;
 
        // finding the maximum element
        for (int ele : finalAns) {
            maxi = Math.max(maxi, ele);
        }
        // Subtracting all the elements
        // from maximum elements
        for (int i = 0; i < finalAns.size(); i++) {
            int val = maxi - finalAns.get(i);
            finalAns.set(i, val);
        }
        return finalAns;
    }
 
    // Function to find sum of nodes
    // present in a single level.
    static void Utilfun(Node root,
                        int level,
                        ArrayList<Integer> ans)
    {
        if (root == null) {
            return;
        }
 
        // Adding the data
        // of all the level
        if (ans.size() == level) {
            ans.add(root.data);
        }
 
        // If previous node data is already
        // then update ans
        else {
            int val = ans.get(level)
                      + root.data;
            ans.set(level, val);
        }
 
        // Basic dfs approach to traverse
        // on all the nodes with next level
        Utilfun(root.left, level + 1, ans);
        Utilfun(root.right, level + 1, ans);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(8);
        tree.root.left = new Node(3);
        tree.root.right = new Node(10);
        tree.root.left.left = new Node(1);
        tree.root.left.right = new Node(6);
        tree.root.right.right = new Node(14);
        tree.root.left.right.left = new Node(4);
        tree.root.left.right.right = new Node(7);
        tree.root.right.right.left = new Node(13);
 
        ArrayList<Integer> ans
            = levelOrderAP(tree.root);
        System.out.println(ans);
    }
}


Python3




# Python3 program for the above approach
import sys
 
# Structure of Node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
def newNode(data):
    temp = Node(data)
    return temp
  
# Function to find the minimum
# value added to make each level
# sum equal
def levelOrderAP(root):
    # Initialization of array
    finalAns = []
 
    # If root is null
    if (root == None):
        return finalAns
 
    # Function Call
    Utilfun(root, 0, finalAns)
    maxi = -sys.maxsize
 
    # finding the maximum element
    for ele in range(len(finalAns)):
        maxi = max(maxi, finalAns[ele])
    # Subtracting all the elements
    # from maximum elements
    for i in range(len(finalAns)):
        val = maxi - finalAns[i]
        finalAns[i] = val
    return finalAns
 
# Function to find sum of nodes
# present in a single level.
def Utilfun(root, level, ans):
    if (root == None):
        return
 
    # Adding the data
    # of all the level
    if (len(ans) == level):
        ans.append(root.data)
 
    # If previous node data is already
    # then update ans
    else:
        val = ans[level] + root.data
        ans[level] = val
 
    # Basic dfs approach to traverse
    # on all the nodes with next level
    Utilfun(root.left, level + 1, ans)
    Utilfun(root.right, level + 1, ans)
 
root = newNode(8)
root.left = newNode(3)
root.right = newNode(10)
root.left.left = newNode(1)
root.left.right = newNode(6)
root.right.right = newNode(14)
root.left.right.left = newNode(4)
root.left.right.right = newNode(7)
root.right.right.left = newNode(13)
 
ans = levelOrderAP(root)
print("[", end="")
for i in range(len(ans) - 1):
    print(ans[i], ", ", sep = "", end = "")
print(ans[-1], "]", sep = "")
 
# This code is contributed by rameshtravel07.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
public class Node
{
    public int data;
    public Node left, right;
};
 
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
  
    return temp;
}
    
   // Function to find the minimum
    // value added to make each level
    // sum equal
    static List<int> levelOrderAP(Node root)
    {
 
        // Initialization of array
        List<int> finalAns = new List<int>();
 
        // If root is null
        if (root == null) {
            return finalAns;
        }
 
        // Function Call
        Utilfun(root, 0, finalAns);
        int maxi = Int32.MinValue;
 
        // finding the maximum element
        foreach (int ele in finalAns) {
            maxi = Math.Max(maxi, ele);
        }
        // Subtracting all the elements
        // from maximum elements
        for (int i = 0; i < finalAns.Count; i++) {
            int val = maxi - finalAns[i];
            finalAns[i] = val;
        }
        return finalAns;
    }
 
    // Function to find sum of nodes
    // present in a single level.
    static void Utilfun(Node root,
                        int level,
                        List<int> ans)
    {
        if (root == null) {
            return;
        }
 
        // Adding the data
        // of all the level
        if (ans.Count == level) {
            ans.Add(root.data);
        }
 
        // If previous node data is already
        // then update ans
        else {
            int val = ans[level]
                      + root.data;
            ans[level] = val;
        }
 
        // Basic dfs approach to traverse
        // on all the nodes with next level
        Utilfun(root.left, level + 1, ans);
        Utilfun(root.right, level + 1, ans);
    }
 
    // Driver Code
    public static void Main()
    {
        Node root = newNode(8);
        root.left = newNode(3);
        root.right = newNode(10);
        root.left.left = newNode(1);
        root.left.right = newNode(6);
        root.right.right = newNode(14);
        root.left.right.left = newNode(4);
        root.left.right.right = newNode(7);
        root.right.right.left = newNode(13);
 
        List<int> ans = levelOrderAP(root);
        foreach(int i in ans)
          Console.Write(i+ " ");
    }
}
 
// This code is contributed by ipg2016107.


Javascript




<script>
    // Javascript program for the above approach
     
    class Node
    {
        constructor(data) {
           this.data = data;
           this.left = null;
           this.right = null;
        }
    }
     
    function newNode(data)
    {
        let temp = new Node(data);
        return temp;
    }
     
   // Function to find the minimum
    // value added to make each level
    // sum equal
    function levelOrderAP(root)
    {
  
        // Initialization of array
        let finalAns = [];
  
        // If root is null
        if (root == null) {
            return finalAns;
        }
  
        // Function Call
        Utilfun(root, 0, finalAns);
        let maxi = Number.MIN_VALUE;
  
        // finding the maximum element
        for(let ele = 0; ele < finalAns.length; ele++) {
            maxi = Math.max(maxi, finalAns[ele]);
        }
        // Subtracting all the elements
        // from maximum elements
        for (let i = 0; i < finalAns.length; i++) {
            let val = maxi - finalAns[i];
            finalAns[i] = val;
        }
        return finalAns;
    }
  
    // Function to find sum of nodes
    // present in a single level.
    function Utilfun(root, level, ans)
    {
        if (root == null) {
            return;
        }
  
        // Adding the data
        // of all the level
        if (ans.length == level) {
            ans.push(root.data);
        }
  
        // If previous node data is already
        // then update ans
        else {
            let val = ans[level] + root.data;
            ans[level] = val;
        }
  
        // Basic dfs approach to traverse
        // on all the nodes with next level
        Utilfun(root.left, level + 1, ans);
        Utilfun(root.right, level + 1, ans);
    }
     
    let root = newNode(8);
    root.left = newNode(3);
    root.right = newNode(10);
    root.left.left = newNode(1);
    root.left.right = newNode(6);
    root.right.right = newNode(14);
    root.left.right.left = newNode(4);
    root.left.right.right = newNode(7);
    root.right.right.left = newNode(13);
 
    let ans = levelOrderAP(root);
    document.write("[");
    for(let i = 0; i < ans.length - 1; i++)
    {
        document.write(ans[i] + ", ");
    }
    document.write(ans[ans.length - 1] + "]");
 
// This code is contributed by decode2207.
</script>


Output

[16, 11, 3, 0]

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments