Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount the nodes of a tree whose weighted string is an anagram...

Count the nodes of a tree whose weighted string is an anagram of the given string

Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weighted string is an anagram with the given string str.
Examples: 
 

Input: 
 

str = “geek” 
Output:
Only the weighted strings of the nodes 2 and 6 
are anagrams of the given string “geek”. 
 

 

Approach: Perform dfs on the tree and for every node, check if it’s weighted string is anagram with the given string or not, If not then increment the count.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
string s;
int cnt = 0;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that return true if both
// the strings are anagram of each other
bool anagram(string x, string s)
{
    sort(x.begin(), x.end());
    sort(s.begin(), s.end());
    if (x == s)
        return true;
    else
        return false;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If current node's weighted
    // string is an anagram of
    // the given string s
    if (anagram(weight[node], s))
        cnt += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    s = "geek";
 
    // Weights of the nodes
    weight[1] = "eeggk";
    weight[2] = "geek";
    weight[3] = "gekrt";
    weight[4] = "tree";
    weight[5] = "eetr";
    weight[6] = "egek";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
    graph[5].push_back(6);
 
    dfs(1, 1);
 
    cout << cnt;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    static String s;
    static int cnt = 0;
 
    static Vector<Integer>[] graph = new Vector[100];
    static String[] weight = new String[100];
 
    // Function that return true if both
    // the Strings are anagram of each other
    static boolean anagram(String x, String s)
    {
        x = sort(x);
        s = sort(s);
        if (x.equals(s))
            return true;
        else
            return false;
    }
 
    static String sort(String inputString)
    {
        // convert input string to char array
        char tempArray[] = inputString.toCharArray();
 
        // sort tempArray
        Arrays.sort(tempArray);
 
        // return new sorted string
        return new String(tempArray);
    }
 
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
        // If current node's weighted
        // String is an anagram of
        // the given String s
        if (anagram(weight[node], s))
            cnt += 1;
 
        for (int to : graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        s = "geek";
        for (int i = 0; i < 100; i++)
            graph[i] = new Vector<Integer>();
         
        // Weights of the nodes
        weight[1] = "eeggk";
        weight[2] = "geek";
        weight[3] = "gekrt";
        weight[4] = "tree";
        weight[5] = "eetr";
        weight[6] = "egek";
 
        // Edges of the tree
        graph[1].add(2);
        graph[2].add(3);
        graph[2].add(4);
        graph[1].add(5);
        graph[5].add(6);
 
        dfs(1, 1);
 
        System.out.print(cnt);
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
cnt = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that return true if both
# the strings are anagram of each other
def anagram(x, s):
    x = sorted(list(x))
    s = sorted(list(s))
    if (x == s):
        return True
    else:
        return False
 
# Function to perform dfs
def dfs(node, parent):
    global cnt, s
     
    # If weight of the current node
    # string is an anagram of
    # the given string s
    if (anagram(weight[node], s)):
        cnt += 1
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
s = "geek"
 
# Weights of the nodes
weight[1] = "eeggk"
weight[2] = "geek"
weight[3] = "gekrt"
weight[4] = "tree"
weight[5] = "eetr"
weight[6] = "egek"
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
graph[5].append(6)
 
dfs(1, 1)
print(cnt)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    static String s;
    static int cnt = 0;
 
    static List<int>[] graph = new List<int>[100];
    static String[] weight = new String[100];
 
    // Function that return true if both
    // the Strings are anagram of each other
    static bool anagram(String x, String s)
    {
        x = sort(x);
        s = sort(s);
        if (x.Equals(s))
            return true;
        else
            return false;
    }
 
    static String sort(String inputString)
    {
        // convert input string to char array
        char []tempArray = inputString.ToCharArray();
 
        // sort tempArray
        Array.Sort(tempArray);
 
        // return new sorted string
        return new String(tempArray);
    }
 
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
        // If current node's weighted
        // String is an anagram of
        // the given String s
        if (anagram(weight[node], s))
            cnt += 1;
 
        foreach (int to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node);
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        s = "geek";
        for (int i = 0; i < 100; i++)
            graph[i] = new List<int>();
         
        // Weights of the nodes
        weight[1] = "eeggk";
        weight[2] = "geek";
        weight[3] = "gekrt";
        weight[4] = "tree";
        weight[5] = "eetr";
        weight[6] = "egek";
 
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
        graph[5].Add(6);
 
        dfs(1, 1);
 
        Console.Write(cnt);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
  
// Javascript implementation of the approach
let s;
let cnt = 0;
 
let graph = new Array(100);
let weight = new Array(100);
for(let i = 0; i < 100; i++)
{
    graph[i] = [];
    weight[i] = 0;
}
 
const sort1 = str => str.split('').sort((a, b) => a.localeCompare(b)).join('');
 
// Function that return true if both
// the strings are anagram of each other
function anagram(x, s)
{
    x = sort1(x);
    s = sort1(s);
  
    if (x == s)
        return true;
    else
        return false;
}
 
// Function to perform dfs
function dfs(node, parent)
{
    // If current node's weighted
    // string is an anagram of
    // the given string s
    if (anagram(weight[node], s))
        cnt += 1;
 
    for(let to = 0; to < graph[node].length; to++)
    {
        if(graph[node][to] == parent)
            continue
        dfs(graph[node][to], node); 
    }
}
 
// Driver code
    s = "geek";
 
    // Weights of the nodes
    weight[1] = "eeggk";
    weight[2] = "geek";
    weight[3] = "gekrt";
    weight[4] = "tree";
    weight[5] = "eetr";
    weight[6] = "egek";
 
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
    graph[5].push(6);
 
    dfs(1, 1);
    document.write(cnt);
 
    // This code is contributed by Dharanendra L V.
      
</script>


Output: 

2

 

Complexity Analysis: 
 

  • Time Complexity : O(N*(S*log(S))). 
    In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Also, for processing each node the sort() function is used which has a complexity of O(S*log(S)) where S is the length of the weighted string. Therefore, the time complexity is O(N*(S*log(S))) where S is the maximum length of the weight string in the tree.
  • Auxiliary Space : O(1). 
    Any extra space is not required, so the space complexity is constant.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments